

ID: 13626

Frischakt (släntschakt) i lös lera med nyttjande av "3D-effekten"

Skanska Sverige AB Teknik

2021

SBUF stödjer forskning & utveckling

> som leder till praktisk handling

Förord

Undertecknad började sin anställning på Skanska Teknik i januari 2009. En central frågeställning i ett av de första uppdragen var hur man bör tillgodoräkna sig stabilitetshöjande 3D-effekter vid utformningen av de sponter som i det fallet behövdes för att stötta de temporära schakterna för källarvåningarna i ett kontorshus i centrala Göteborg. Sedan dess (och säkerligen även långt innan dess) har diverse varianter på denna frågeställning återkommit i ett stort antal byggprojekt som Skanska Teknik har varit involverade i. Detta har bl.a. resulterat i SBUF-rapporter angående hur man kan beakta stabilitetshöjande 3D-effekter vid nyttjande av konsolsponter (Edstam, 2018) respektive enbandssponter (Kullingsjö & Tornborg, 2020).

Denna Slutrapport behandlar stabilitetshöjande 3D-effekter vid frischakter (släntschakter) och baseras dels på diverse insikter som har erhållits de senaste ca 10 åren och dels på erfarenheterna från teoretiska analyser av ett antal scenarier som ofta uppkommer i byggskedet.

Till detta SBUF-projekt har varit kopplat en referensgrupp enligt följande:

- Lars Hall, NCC
- Urban Högsta, Golder
- Caesar Kardan Skanska
- Anders Kullingsjö, Skanska
- Karin Lundström, Statens geotekniska institut
- Johnny Wallgren, PEAB

Projektet har finansierats av SBUF och Skanska Sverige AB.

Ett stort tack riktas till samtliga ovannämnda personer och finansiärer samt till ett antal kollegor på Skanska Teknik (ingen nämnd och ingen glömd) som på olika sätt har bidragit till genom- och slutförandet av detta projekt.

Ett extra stort tack riktas till Rolf Larsson och Per-Evert Bengtsson, båda tidigare på Statens geoteknisk institut, samt Göran Sällfors, tidigare på Chalmers, som (som vanligt) tog sig tid att svara på mina frågor – i detta fall rörande bakgrunden till nuvarande svensk branschpraxis i det aktuella ämnet - och (som vanligt) uppmuntrade mig att "tänka fritt".

Göteborg i januari 2021

Torbjörn Edstam

SAMMANFATTNING

Schaktarbeten skall alltid utföras på ett sådant sätt att stabilitetsförhållandena är tillfredställande.

I många fall har schaktgropen begränsad längd och/eller är belastningen från exempelvis maskiner begränsad till en mindre delsträcka inom området bakom släntkrönet. Därmed finns det en tredimensionell effekt (3D-effekt) som påverkar stabilitetsförhållandena. Förutsatt att denna effekt inte tillgodoräknas vid stabilitetsanalysen (således en 2D-analys) är antagandena mer eller mindre "på säkra sidan". Detta kan dock innebära långsammare och kostsammare framdrift än nödvändigt, vilket gör att man ofta försöker utnyttja 3D-effekten.

I detta projekt har fokus varit på att öka förståelsen för hur 3D-effekten kan tillgodoräknas, varvid en stor del av arbetet har omfattat analyser med finita element metoden (FEM) - inklusive beaktande av tredimensionella geometrier och/eller lastförutsättningar (3D-FEM). Eftersom jorden har modellerats som ett "cu-material" är resultaten och slutsatserna endast relevanta för temporära schakter i normalkonsoliderad eller lätt överkonsoliderad lera.

De viktigaste slutsatserna från studien är:

- Nuvarande branschpraxis baseras delvis på en felaktig ekvation. Detta medför sannolikt resultat som är mer eller mindre "på säkra sidan", ur ett stabilitetsperspektiv, givet att de byggnadstekniska förhållandena överensstämmer med de förutsättningar som ekvationen baseras på. Vid andra (mindre gynnsamma) förhållandena (vilket torde vara vanligt förekommande i praktiken) medför dock nuvarande branschpraxis, i form av en mer generaliserad variant av ovannämnda ekvation, resultat som, ur ett stabilitetsperspektiv, är "på osäkra sidan".
- Baserat på analyser med 3D-FEM av 66 st scenarier föreslås ett antal förenklade beräkningsmetoder – varav en metod i huvudsak är en korrigerad variant av nuvarande branschpraxis. Samtliga metoder resulterar, när de är tillämpbara, i en säkerhetsfaktor som är inom ca ±10 % jämfört med den säkerhetsfaktor som erhållits med 3D-FEM. Således bör de föreslagna metoderna kunna nyttjas för åtminstone en preliminär uppskattning av storleken på 3D-effekten. Om 3D-säkerhetsfaktorn är i det lägre spannet av vad som anses vara tillfredsställande och/eller om 3D-säkerhetsfaktorn är mer än ca 25% större än den kritiska delsträckans 2D-säkerhetsfaktor bör den erhållna säkerhetsfaktorn värderas med extra stor eftertanke och dessutom bedömas med andra metoder.
- De föreslagna förenklade beräkningsmetoderna baseras på de scenarier som analyserats mha 3D-FEM. Beräkningsmetodernas tillförlitlighet för andra scenarier går självklart inte att avgöra innan de har studerats. Därför är det önskvärt att ytterligare scenarier systematiskt analyseras med 3D-FEM samt - om så visar sig vara nödvändigt - de förenklade beräkningsmetoderna modifieras och/eller generaliseras.

Innehåll

1 IN	LEDNING	5
1.1	Bakgrund	5
1.2	Syfte	5
1.3	Genomförande	6
2 N	YTTJANDE AV 3D-EFFEKTER ENLIGT NUVARANDE SVENSK PRAXIS	8
3 Al	NALYSERADE SCENARIER	10
3.1	INLEDNING	10
3.2	JORDLAGERPROFIL OCH MATERIALEGENSKAPER	10
3.3	SCHAKTGEOMETRIER OCH YTLASTER	10
3.4	EFTERSTRÄVADE STABILITETSFÖRHÅLLANDEN	11
3.5	STUDERADE SCENARIER:	11
3.6	3D FE-modeller	11
4 Bl	ERÄKNINGSRESULTAT – BROTTMEKANISMENS FORM OCH UTBREDN	ING
17		
4.1	INLEDNING	17
4.2	ETAPPVIS SCHAKT, LEDNINGSLÄGGNING OCH ÅTERFYLLNING	17
4.3	SCHAKT I FORM AV KVADRATISK SCHAKTGROP FÖR EXEMPELVIS PUMPSTATION MED	
EVE	NTUELL YTLAST PÅ ENA SIDAN	21
4.4	SCHAKT I FORM AV REKTANGULÄR SCHAKTGROP FÖR EXEMPELVIS BROSSTÖD MED	
EVE	VTUELL YTLAST PÅ ENA KORTSIDAN	32
4.5	LÅNGSTRÄCKT LEDNINGSSCHAKT MED LOKAL YTLAST	32
5 FÓ	ÖRSLAG PÅ FÖRENKLADE BERÄKNINGSMETODER	41
5.1	INLEDNING	41
5.2	ETAPPVIS SCHAKT, LEDNINGSLÄGGNING OCH ÅTERFYLLNING	42
5.2	2.1 Gens-metoden	42
5.2	2.2 Korrigerade 3:95-ekvationen	46
5.3	SCHAKT I FORM AV KVADRATISK SCHAKTGROP FÖR EXEMPELVIS PUMPSTATION MED	
EVE	NTUELL YTLAST PÅ ENA SIDAN	48
5	3.1 Gens-metoden	48
5	3.2 Korrigerade 3:95-ekvationen	51
5.4	SCHAKT I FORM AV REKTANGULÄR SCHAKTGROP FÖR EXEMPELVIS BROSSTÖD MED	
EVE	NTUELL YTLAST PÅ ENA KORTSIDAN	52
5.4	4.1 Gens-metoden	52
5.4	4.2 Korrigerade 3:95-ekvationen	54
5.5	LÅNGSTRÄCKT LEDNINGSSCHAKT MED LOKAL YTLAST	55
5	5.1 Inledning	55
5	5.2 Medelvärdesmetoden	55

5.	5.3 N:1-metoden	56
5.	5.4 Nyanserade Gens-metoden	59
5.	5.5 Korrigerade 3:95-metoden	62
6 Ö	VERGRIPANDE SLUTSATSER OCH REKOMMENDATIONER	64
6.1	Inledning	64
6.2	ANGÅENDE NUVARANDE BRANSCHPRAXIS	64
6.3	FÖRSLAG PÅ NÅGRA ALTERNATIVA FÖRENKLADE BERÄKNINGSMETODER	65
6.4	ÖVRIGT	66
6.5	Förslag på fortsatt arbete	66
7 R	EFERENSER	67
8 B	ILAGOR	68

1 Inledning

1.1 Bakgrund

Schaktarbeten skall alltid utföras på ett sådant sätt att stabiliteten är tillfredställande.

Schaktgeometrin är ofta långsträckt (tvådimensionell - "2D") parallellt med släntkrönet (exempelvis långsmala ledningsschakter med konstant tvärsektion), men belastas av exempelvis maskiner eller upplag strax bakom släntkrönet längs en begränsad delsträcka. Alternativt är schaktgeometrin begränsad parallellt med släntkrönet (exempelvis schakter för pumpbrunnar eller brostöd varvid kvoten mellan schaktbredden och schaktlängden ofta är 1:1 á 1:4 eller ledningsschakter som utförs genom etappvis schakt, ledningsläggning och återfyllning) och dessutom lokalt belastad av exempelvis en grävmaskin strax bakom släntkrönet. I de ovan beskrivna scenarierna har det "kritiska belastningssnittet" begränsad utbredning längs släntkrönet vilket innebär att det finns en mer eller mindre gynnsam tredimensionell effekt (3D-effekt). Förutsatt att denna effekt inte tillgodoräknas vid stabilitetsanalysen (således en 2D-analys) är antagandena mer eller mindre "på säkra sidan". Detta kan dock innebära långsammare och kostsammare framdrift än nödvändigt (exempelvis i form av flackare schaktslänter, lättare maskiner eller behov av byte från frischakt (släntschakt) till schakt inom spont, etc), vilket gör att man ofta försöker tillgodoräkna sig 3D-effekten. Detta baseras dock ofta på tidigare personliga erfarenheter under mer eller mindre kontrollerade former. Numera finns dock kommersiellt tillgängliga avancerade analysverktyg i form av finita element metoden (FEM), vilka även kan beakta tredimensionella geometrier och lastförutsättningar, sk 3D-FEM. Denna typ av analyser är dock förhållandevis tidskrävande, kräver tillgång till kostsam programvara samt god förståelse för hur beräkningsprogrammet fungerar (avseende såväl praktisk hantering som de underliggande teorierna).

Inom ramen för ett tidigare avslutat SBUF-projektet (Edstam, 2018) utfördes en begränsad litteraturgenomgång samt diverse analyser mha 3D-FEM avseende 3D-effekten vid frischakt (släntschakt) i lös lera, varvid konstaterades att dagens branschpraxis delvis är felaktig och riskerar att leda till en överskattning av 3D-effekten, jfr Kapitel 2.

1.2 Syfte

Målsättningen med projektet har varit att möjliggöra att 3D-effekten kan beaktas under mer kontrollerade former vid frischakt (släntschakt) vilket innebär att schaktarbetet kan utföras såväl säkrare som effektivare än med dagens branschpraxis. Härvid har syftet varit att utveckla en förenklad beräkningsmetod som medför att tidskrävande analyser med 3D-FEM i möjligaste mån kan undvikas eller reduceras. Således kan de i rapporten föreslagna beräkningsmetoderna åtminstone användas vid inledande överslagsberäkningar. Huruvida enstaka kompletterande analyser med 3D-FEM (eller andra relevanta metoder) erfordras vid efterföljande detaljprojektering måste dock avgöras av ansvarig geotekniker från fall till fall mht de aktuella byggnadstekniska förhållandena.

Studien avser stabilitetsförhållandena vid schaktarbeten i lera. Lerans har modellerats som ett "c_u-material", dvs ett material vars hållfasthet definieras av den odränerade skjuvhållfastheten c_u. Således är de redovisade resultaten och slutsatserna endast relevanta för temporära schakter i normalkonsoliderad eller lätt överkonsoliderad lera.

1.3 Genomförande

Inledningsvis har ett antal vanligen förekommande byggskedesrelaterade huvudscenarier identifierats varefter de har diskuterats med och förankrats hos projektets Referensgrupp. De huvudscenarier som har valts ut för fortsatta 3D-analyser är, jfr även Figur 1:

- 1) Etappvis schakt, ledningsläggning och återfyllning
- 2) Schakt för pumpstation
- 3) Schakt för brostöd
- 4) Långsträckt ledningsschakt med lokal ytlast

I de studerade scenarierna förbättras stabilitetsförhållandena av 3D-effekten, vilken uppstår till följd av schaktgropens geometri (dess begränsade längd) och/eller anslutande 3D-ytlast (dess begränsade utbredning längs schaktgropen). Gemensamt för samtliga studerade scenarier är att de i huvudsak utgörs av en relativt väldefinierad "kritisk" delsträcka (definierad av dess 2Dtvärsektion, vilken har bristfällig 2D-stabilitet), vilken omges av likaledes relativt väldefinierade "överstarka" delsträckor (båda delsträckorna definierade av identiska 2D-tvärsektioner, dock med tillräckligt stor utbredning vinkelrätt densamma, som har mer än tillräcklig 2D-stabilitet).

Figur 1. Illustrationer av de huvudscenarier som har studerats.

Huvudscenarierna har analyserats mha 3D-FEM, varvid fokus har lagts på hur de geometrier och/eller yttre laster som ger upphov till 3D-effekten påverkar stabilitetsförhållandena. Dessa analyser har utförts med FE-mjukvaran PLAXIS 3D. Beräkningarna har även kompletterats med konventionella stabilitetsanalyser i 2D (mjukvarorna PLAXIS 2D och Slope/W).

Baserat på analyserna av beräkningsresultaten har ett antal förenklade beräkningsmetoder utvecklats. Samtliga metoder är relativt enkla att använda (om än i varierande grad), men varje metod har sina möjligheter och begränsningar.

2 Nyttjande av 3D-effekter enligt nuvarande svensk praxis

Den metod som kan anses vara nuvarande praxis inom den svenska geoteknikerkåren återfinns i Skredkommissionen (1995). "Huvudstegen/Ekvationerna" i den metoden återges i Figur 2. Noteras bör att tillvägagångssättet enligt den övre delen av figuren endast är tillämpbart om 3D-brottmekansimen är fullständigt "instängd" inom den kritiska delsträckan, vilket ofta inte torde vara fallet. Således är tillvägagångssättet enligt den nedre delen av figuren det som torde vara aktuellt i normalfallet.

$$\begin{aligned} \text{Steg 1.} \qquad & F_{2-Dim} = \frac{\sum M_{(\tau f_{i\ell} \cdot I \cdot \tau)} \Delta L}{\sum M_{(W \cdot a+Q \cdot b)} \Delta L} \\ \text{Steg 2.} \qquad & F_p = \frac{\sum M_{(\tau f_{i\ell} \cdot I \cdot \tau)} \Delta L + M_{(\tau f_{i\ell} \cdot A_l \cdot c_l)} + M_{(\tau f_{i\ell} \cdot A_2 \cdot c_2)}}{\sum M_{(W \cdot a+Q \cdot b)} \Delta L} \\ \text{Steg 3.} \qquad & F_{3-Dim} = F_{2-Dim} + 0.75(\frac{F_p}{F_{2-Dim}} - 1) \end{aligned}$$

Figur 2. Huvudstegen vid beaktande av 3D-effekter enligt nuvarande svensk praxis (från Skredkommissionen, 1995).
Övre delen: Förutsatt att den kritiska delsträckan omges av delsträckor där jorden har oändligt hög hållfasthet.
Undre delen: Förutsatt att den kritiska delsträckan omges av delsträckor med begränsad stabilitet.

Sedan en handfull år gäller Eurocode 7 (SS-EN 1997:1, 2005) i Sverige och därmed kan stabilitetsförhållandena kontrolleras på basis av antingen dimensionerande hållfasthetsvärden ($F_{EN, erforderlig} \ge 1,00$ förutsatt Säkerhetsklass 2) eller karakteristiska hållfasthetsvärden ($F_{tot, erforderlig} \ge 1,50$ förutsatt Säkerhetsklass 2 och odränerad analys). Det förefaller rimligt att samtliga ekvationer i Figur 2 skall vara direkt tillämpbara oavsett om dimensionerande eller karakteristiska hållfasthetsvärden används, men det kan visas att så inte är fallet när det gäller "Huvudsteg/Ekvation 3", se Bilaga A. Som framgår i Skredkommissionen (1995) baseras den däri angivna förenklade metoden för att beakta 3D-effekten på en artikel av Gens et al (1988) och i den artikeln återges inte (åtminstone inte explicit) samtliga ekvationer i Figur 2. Däremot redovisas bl.a. diverse diagram där det framgår hur ändytornas form (plan, krökt, mfl) – allt annat lika - påverkar storleken på den tredimensionella säkerhetsfaktorn F_{3D} förutsatt att den kritiska delsträckan omges av delsträckor som fullständigt "stänger in" 3D-brottmekanismen. Efter närmare studium av dessa diagram är konklusionen att ekvationen i "Steg 3" i den övre delen av Figur 2 är felaktig och skall korrigeras enligt Ekvation 1 nedan.

$$F_{3D} = F_{2D,kritisk} + 0.75 \cdot (F_{3D,plan} - F_{2D,kritisk})$$
 Ekvation 1

Denna modifierade ekvation (inklusive dess härledning – se Bilaga A) har diskuterats med flera av delförfattarna till Skredkommissionen (1995), vilket föranlett slutsatsen att "Tryckfels-Nisse" sannolikt var i farten 1995 (Larsson *et al*, 2016). Ekvation 1 är således direkt tillämpbar vid kontroll av stabilitetsförhållandena på basis av såväl dimensionerande som karakteristiska hållfasthetsvärden.

Vid tillämpning av tillvägagångssättet i Figur 2 (dock modifierad enligt Ekvation 1 ovan) är det av största vikt att beakta att den glidyta som vid 3D-förhållanden resulterar i minimal säkerhetsfaktor ofta är grundare än den glidyta som resulterar i minimal säkerhetsfaktor vid 2Dförhållanden. Om detta inte beaktas är sannolikheten stor att 3D-stabilitetsförhållandena överskattas

I de fall som den kritiska delsträckan omges av delsträckor som inte förmår att fullständigt "stänga in" 3D-brottmekanismen måste även detta beaktas. Enligt Skredkommissionen (1995) kan detta göras genom förfarandet i den undre delen av Figur 2. Det tillvägagångssättet leder dock till att stabilitetsförhållandena överskattas eftersom den på detta sätt beräknade 3Dsäkerhetsfaktorn inte kan bli lägre än i fallet att den kritiska delsträckan omges av delsträckor som fullständigt "stänger in" 3D-brottmekanismen, se exempelvis Edstam&Kullingsjö (2019).

3 Analyserade scenarier

3.1 Inledning

Ett antal olika kombinationer avseende grundförhållanden, schaktgeometrier och ytlaster bakom släntkrön har analyserats i syfte att någorlunda täcka in ett antal vanligen förekommenade situationer i byggskedet, jfr Kapitel 1.3.

3.2 Jordlagerprofil och materialegenskaper

Jordlagerprofilen utgörs av 1 m fyllning som underlagras av lera till "stort djup" (underkant lera ligger på så stort djup att brottmekanismen ej påverkas).

Fyllningen utgörs av friktionsjord med tungheten 18 kN/m3. Vid 3D FE-simuleringar avseende brottmekanismer medför jordlager av fiktionsjord att beräkningstiden ökar högst påtagligt. Dessutom erhålls i vissa fall andra brottmekanismer än den som är av intresse. I aktuell studie har därför fyllningen ersatt med en vertikal randspänning ("stavlast") verkande mot överkant lera.

Leran har tungheten 16 kN/m³ och tre alternativa hållfasthetsprofiler (isotrop odränerad skjuvhållfasthet):

- $c_{u, karakteristisk} = 10 \text{ kPa}$
- $c_{u, karakteristisk} = 10+1,5z$ kPa (z= 0 i nivå med ursprunglig överkant lera)
- $c_{u, karakteristisk} = 20 \text{ kPa}$

3.3 Schaktgeometrier och ytlaster

Ett antal kombinationer av schaktgeometrier och ytlaster har studerats enligt nedan, jfr även Figur 3 - Figur 6. Genomgående har dock förutsatts schaktslänter i lutning 1:1,5.

a) Etappvis schakt, ledningsläggning och återfyllning:

I detta fall uppkommer 3D-effekten enbart pga schaktgeometrin. Schaktarbetet förutsätts att utföras från en kortsida (schaktfronten), varvid tyngden av grävmaskinen förutsätts vara "totalkompenserad" genom "lokal avhyvling" av den ursprunglig markytan. Tre olika schaktbottenlängder har studerats, vilka är valda mht typiska längder på ledningspipor och den extra "fria längd" som behövs av utrymmesskäl.

b) Kvadratisk schaktgrop, för exempelvis en pumpstation, med ytlast på ena sidan: I detta fall uppkommer 3D-effekten pga såväl schaktgeometrin som ytlasten. Ytlasten förutsätts vara placerad på ena sidan av schaktgropen och ha en intensitet (15 respektive 20 kPa) motsvarande en mindre respektive större grävmaskin placerad på 5x5 m² stockmattor strax bakom släntkrönen respektive en pålkran (intensitet 30 kPa) placerad på 6x5 m² stockmattor längre bakom släntkrönet. Eftersom fokus är på "totalstabiliteten" är ytlasterna delvis schabloniserade, dvs hantering av "lokal bärighet" mht lastexcentricitet, mm är ej detaljstuderad.

- c) Rektangulär schaktgrop för exempelvis ett brosstöd med ytlast på ena kortsidan: I detta fall uppkommer 3D-effekten pga såväl schaktgeometrin som ytlasten. Ytlasten förutsätts vara identisk med den som beskrivs mer ingående i b) ovan.
- d) Långsträckt ledningsschakt med lokal ytlast:
 I detta fall uppkommer 3D-effekten enbart pga ytlasten. Ytlasten förutsätts vara identisk med den som beskrivs mer ingående i b) ovan.

3.4 Eftersträvade stabilitetsförhållanden

Schaktdjupen för de olika kombinationerna av jordlagerförhållanden, schaktgeometrier och ytlaster har valts med målsättningen att studera i huvudsak scenarier där totalsäkerhetsfaktorn inklusive 3D-effekter (F_{tot,3D}) uppgår till ca 1,3 á 1,7, dvs ungefär inom spannet Säkerhetsklass 1 á Säkerhetsklass 3. Den kritiska delsträckans 2D-säkerhetsfaktor överstiger dock 1,0 i samtliga fall.

3.5 Studerade scenarier:

Totalt har 66 st scenarier har studerats med fördelning enligt följande (se Figur 7 för detaljerade förutsättningar):

- a) Etappvis schakt, ledningsläggning och återfyllning: 18 st
- b) Kvadratisk schaktgrop, för exempelvis en pumpstation, med ytlast på ena sidan: 18 st
- c) Rektangulär schaktgrop för exempelvis ett brosstöd med ytlast på ena kortsidan: 18 st
- d) Långsträckt ledningsschakt med lokal ytlast: 12 st

3.6 3D FE-modeller

Eftersom fokus är på brottgränstillstånd (ULS/GEO) behöver FE-modellens geometri inte göras större än att brottmekanismen inte påverkas av de "onaturliga ränder" som alltid måste införas för att det skall vara praktiskt möjligt att genomföra analyserna. Dessutom nyttjas diverse symmetrisnitt i syfte att minimera beräkningstiden. Till detta kommer att erhålla tillräcklig finhet på elementnätet. Således har diverse inledande tester utförts för respektive huvudscenario innan de "skarpa" beräkningarna genomfördes. Några exempel på nyttjade beräkningsmodeller framgår av Figur 8 och Figur 9.

Figur 3. Etappvis schakt, ledningsläggning och återfyllning.

Figur 4. Schakt i form av kvadratisk schaktgrop, för exempelvis en pumpstation, med ytlast på ena sidan.

Figur 5. Schakt i form av rektangulär schaktgrop för exempelvis ett brosstöd med ytlast på ena kortsidan.

Figur 6. Långsträckt ledningsschakt med lokal ytlast.

Huvudscenario	Scenario	cu i markytan [kPa]	dcu/dz [kPa/m]	Vtlast med begränsad utbredning [kPa]	Vtlastens avstånd från släntrkrön [m]	Ytlastens längd längs släntkrön (när aktuelit) [m]	Ytlastens längd vinkelrätt släntkrön (när aktuelit) [m]	Schaktbottenbredd [m]	Schaktbottenlängd (när aktuelt) [m] [m]	Kritisk: Schaktdjup från ök Fr [m]	Ôverstrark: Schakttjup från ŏk Fr [m]
	1a 1b	10 10	0	15 15	1,0	5,0 5.0	5,0 5.0	2,0		2,25	2,25
	1c	10	0	30	6,0	5,0	6,0	2,0	-00	1,75	1,75
	1d	10	0	30	6,0	5,0	6,0	2,0	~	1,30	1,30
med lokal ytlas	1e	10	1,5	20	1,0	5,0	5,0	2,0		3,5	3,50
	1f	10	1,5	20	1,0	5,0	5,0	2,0	- 00	2,5	2,50
	1g	10	1,5	30	6,0	5,0	6,0	2,0		3,6	3,60
jsschakt	1h	10	1,5	30	6,0	5,0	6,0	2,0		3,0	3,00
t ledning	1i	20	0	20	1,0	5,0	5,0	2,0	00	4,7	4,70
räck	1j	20	0	20	1,0	5,0	5,0	2,0		4,0	4,00
Långst	1k	20	0	30	6,0	5,0	6,0	2,0	00	4,6	4,60
	11	20	0	30	6,0	5,0	6,0	2,0		4,0	4,00
ĝ	2a	10	0	0	1,0	5,0	5,0	2,0	3,0	3,1	0
(Ini	2b	10	0	0	1,0	5,0	5,0	2,0	3,0	2,6	0
terfy	2c	10	0	0	1,0	5,0	5,0	2,0	6,0	3,1	0
chá	2d 2e	10	0	0	1,0	5,0	5,0	2,0	6,0 9.0	2,6	0
ē	2f	10	0	0	1,0	5,0	5,0	2,0	9,0	2,6	0
gnir	2g 2b	10	1,5	0	1,0	5,0	5,0	2,0	3,0	5,6	0
släg	2ii	10	1,5	0	1,0	5,0	5,0	2,0	6,0	5,6	0
ning	2j	10	1,5	0	1,0	5,0	5,0	2,0	6,0	4,0	0
ledi	2k	10	1,5	0	1,0	5,0	5,0	2,0	9,0	5,6	0
akt,	21 2m	20	0	0	1,0	5,0	5,0	2,0	3,0	6,5	0
sch	2n	20	0	0	1,0	5,0	5,0	2,0	3,0	5,4	0
ovis	20	20	0	0	1,0	5,0	5,0	2,0	6,0	6,5	0
Etapl	2p 2q	20	0	0	1,0	5,0	5,0	2,0	9,0	6,5	0
	2r	20	0	0	1,0	5,0	5,0	2,0	9,0	5,4	0
sidan	3a 3b	10 10	0	0	1,0 1,0	5 5	5 5	5	12 12	3,1 2,6	0
conts	3c	10	0	15	1.0	5	5	5	12	2.2	0
pål	3d	10	0	15	1,0	5	5	5	12	1,8	0
tlast	3e	10	0	30	6,0	5	6	5	12	1,8	0
ed y	31	10	0	30	6,0	5	6	5	12	1,2	0
E tř	3g	10	1,5	0	1,0	5	5	5	12	5,6	0
stö	3h	10	1,5	0	1,0	5	5	5	12	4,0	0
s pr	3i	10	1,5	20	1,0	5	5	5	12	3,4	0
pelvi	3j	10	1,5	20	1,0	5	5	5	12	2,3	0
(em p	3k	10	1,5	30	6,0	5	6	5	12	4,4	0
för ex	31	10	1,5	30	6,0	5	6	5	12	3,0	0
trop,	3m	20	0	0	1,0	5	5	5	12	6,5	0
aktg	3n	20	0	0	1,0	5	5	5	12	5,4	0
schi	2-	20	0	20	10	-	-		10	5.0	0
qulär	30	20	0	20	1,0	5	5	5	12	4.2	0
ttanç	30	20	0	30	6.0	5	6	5	12	5.2	0
Ret	3r	20	0	30	6.0	5	6	5	12	4 1	0
-e	42	10	0	0	10	5	5	5	5	31	0
ast	4b	10	0	0	1,0	5	5	5	5	2,6	0
h Y	4c	10	0	15	1,0	5	5	5	5	2,2	0
a	40 4e	10	0	30	6.0	5	6	5	5	1,8	0
tion,	4f	10	0	30	6,0	5	6	5	5	1,2	0
psta	4g	10	1,5	0	1,0	5	5	5	5	5,6	0
mnd	4h	10	1,5	0	1,0	5	5	5	5	4,0	0
an	4i 4i	10	1,5	20	1,0	5	5	5	5	3,4	0
rop, för exempelv ena sida	4k	10	1.5	30	6.0	5	6	5	5	4.4	0
	41	10	1,5	30	6,0	5	6	5	5	3,0	0
	4	20	0	0	10	E	6	c	E	65	0
aktg	4m 4n	20	0	0	1,0	5	5	5	5	5.4	0
Kvadratisk scha	40	20	0	20	1,0	5	5	5	5	5,6	0
	4p	20	0	20	1,0	5	5	5	5	4,2	0
	4q	20	0	30	6,0	5	6	5	5	5,2	0
	4r	20	0	30	6,0	5	6	5	5	4,1	0

Figur 7. Förutsättningar i de studerade scenarierna.

Figur 8. FE-modell för rektangulär schakt med ytlasten på kortsidan ur några olika perspektiv (notera koordinatsystemet för enklare perspektivförståelse).
Överst: Utöver de markerade symmetriplanen har även modellens övriga vertikala begränsningsytor tilldelats randvillkor motsvarande symmetriplan.
Övrigt: Elementnät samt randspänningar (blått) för fyllning respektive ytlast.

Figur 9.FE-modell för långsträckt ledningsschakt med lokal ytlast ur några olika perspektiv
(notera koordinatsystemet för enklare perspektivförståelse).
Överst: Utöver de markerade symmetriplanen har även modellens övriga vertikala
begränsningsytor tilldelats randvillkor motsvarande symmetriplan.
Övrigt: Elementnät samt randspänningar (blått) för fyllning respektive ytlast.

4 Beräkningsresultat – brottmekanismens form och utbredning

4.1 Inledning

3D FE-analyserna resulterade naturligtvis ett antal kvantitativa resultat som nyttjats för de föreslagna förenklade beräkningsmetoderna. I detta kapitel redovisas dock diverse "utdatafigurer" eftersom dessa ger en visuell uppfattning om de aktuella brottmekanismernas utbredning och form ,vilket i sin tur beaktats vid framtagningen av de föreslagna förenklade beräkningsmetoderna. I efterföljande Kapitel 4.2-4.5 redovisas och kommenteras några utvalda exempel för respektive huvudscenario. "Utdatafigurerna" för samtliga analyser redovisas i Bilaga B-Bilaga E.

4.2 Etappvis schakt, ledningsläggning och återfyllning

Typiska brottmekanismer för fallet $c_u=10$ kPa framgår i Figur 10. I såväl 2D- som 3D-situationen har brottmekanismen i huvudsak formen av en cirkelbåge i det kritiska symmetritvärsnittet. Cirkelbågen når fram till motstående sidas släntfot i detta snitt. I 3D-situationen begränsas brottmekanismen av den sekundära slänten, men mekanismen sträcker sig en bit in i densamma.

Typiska brottmekanismer för fallet $c_u=10+1,5z$ kPa framgår i Figur 11. I såväl 2D- som 3Dsituationen har brottmekanismen i huvudsak formen av en cirkelbåge i det kritiska symmetritvärsnittet. Cirkelbågen når fram till motstående sidas släntfot i detta snitt. I 3Dsituationen begränsas brottmekanismen av den sekundära slänten, men mekanismen sträcker sig en bit in i densamma. Brottmekanismen förefaller att vara ytligare än i fallet $c_u=10$ kPa. I det redovisade 3D-scenariot syns även tendenser till att ytterligare en brottmekanism är på väg att utbildas i den sekundära slänten. Detta torde bero på att schaktbottenlängden är förhållandevis liten i jämfört med schaktbottenbredden (3,0 m jfrt 2,0 m) samtidigt som brottmekanismen är förhållandevis ytlig.

Typiska brottmekanismer för fallet $c_u=20$ kPa framgår i Figur 12. Brottmekanismen uppvisar samma huvuddrag som i fallet $c_u=10$ kPa.

Figur 10. 2D-schakt och 3D-schakt för Scenario 2a (detaljerade förutsättningar framgår i Figur 7).

Överst: Beräkningsmodell och brottmekanism vid 2D-schakt. Mitten: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

Figur 11. 2D-schakt och 3D-schakt för Scenario 2g (detaljerade förutsättningar framgår i Figur 7). Överette Penälmingsmodell och hrottmekanism vid 2D schalt

Överst: Beräkningsmodell och brottmekanism vid 2D-schakt. Mitten: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

018000 Output Version 2018 0.0.0 174.00 606.00 646.00 606.00 506.00 626.00 606.00 606.00 206.00 206.00 106.00 106.00 106.00 106.00 106.00 106.00 106.00 91,33 91,55 Current coh value of 18 21 kN = 0.7331 m (Element 24778 at Node 727) PLAXIS 2020-10-14 2020-10-14 PLAXIS 45 Skanska Sverige AB 45 Skanska Sverige AB nedium mesh an 2018 0 0 0 12,48 12,48 13,46 13,56 13,56 14,566 14,56 Iniform value of 12,60 kN lue = 0,7788 m (Eler tent 2491 2020-10-14 2020-10-14 PLAXIS PLAXIS Fr_medium mesh 65 Skanska Sverige AB m_1m Fr_medium mesh 65 Skanska Sverige AB 2318.0.0.2 sion 2018 0 0 0 ¹ 3 ² 496 (4) ³ 496 (4)</l 19⁸) 500(0) 600(0) 600(0) 600(0) 600(0) 500(0) 500(0) 500(0) 120(0) 120(0) 100(0) 100(0) 60(0) 60(0) 0.7411 PLAXIS 7000 Marcine 20m_11m Fr_medium mesh 2020-10-14 2020-10-14 PLAXIS Skanska Sverige AB 2m_1m Fr_medium mesh 65 45 Skanska Sverige AB

Figur 12. 2D-schakt och 3D-schakt för Scenario 2m (detaljerade förutsättningar framgår i Figur 7).

Överst: Beräkningsmodell och brottmekanism vid 2D-schakt. Mitten: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

4.3 Schakt i form av kvadratisk schaktgrop för exempelvis pumpstation med eventuell ytlast på ena sidan

Typiska brottmekanismer för fallet c_u=10 kPa utan ytlast framgår i Figur 13. 3D-schakten är kvadratisk vilket medför att två identiska brottmekanismer utbildas - en i varje slänt. I såväl 2D-som 3D-situationen har brottmekanismen i huvudsak formen av en cirkelbåge i de kritiska symmetritvärsnitten. I 3D-situationen når brottmekanismen inte fram till motstående sidas släntfot i dessa symmetrisnitt vilket den däremot gör i 2D-situationen. I 3D-situationen begränsas brottmekanismen av den sekundära slänten, men mekanismen sträcker sig en bit in i densamma.

Typiska brottmekanismer för fallet $c_u=10$ kPa med ytlasten strax bakom den ena släntkrönet framgår i Figur 14. Ytlasten medför att brottmekanismen utbildas i slänten framför densamma. I såväl 2D- som 3D-situationen har brottmekanismen i huvudsak formen av en cirkelbåge i det kritiska symmetritvärsnittet. I 3D-situationen når brottmekanismen inte fram till motstående sidas släntfot i symmetrisnittet vilket den däremot gör i 2D-situationen. I 3D-situationen begränsas brottmekanismen av den sekundära slänten, men mekanismen sträcker sig en bit in i densamma.

Typiska brottmekanismer för fallet c_u=10 kPa med ytlasten längre bort från den ena släntkrönet framgår i Figur 15 och Figur 16. I båda scenarierna erhålls i 2D-situationen brottmekanismer som i huvudsak har formen av en cirkelbåge som når fram till motstående sidas släntfot. I det förra scenariot, för vilket schaktdjupet är större än i det senare scenariot, erhålls i 3D-situationen en brottmekanism som når fram till schaktbotten i det kritiska symmetritvärsnittet, men mekanismen har inte formen av en cirkelbåge. Brottmekanismen, som är påtagligt "långsmal" (dess utbredning vinkelrätt slänten är betydligt större än dess utbredning längs slänten, dvs en påtaglig 3D-effekt) begränsas av den sekundära slänten, men mekanismen sträcker sig en bit in i densamma. I det senare scenariot, för vilken schaktdjupet är grundare än i det förra scenariot, erhålls i 3D-situationen en brottmekanism som inte når fram till schakten - istället är det en brottmekanism motsvarande "lokal bärighet" som är mest kritisk.

Typiska brottmekanismer för fallet $c_u=10+1,5z$ kPa med ytlasten strax bakom den ena släntkrönet framgår i Figur 17. Ytlasten medför att brottmekanismen utbildas i slänten framför densamma. I såväl 2D- som 3D-situationen har brottmekanismen i huvudsak formen av en cirkelbåge i det kritiska symmetritvärsnittet och slår upp i schaktbotten nära den främre släntfoten i detta snitt. I 3D-situationen begränsas brottmekanismen av den sekundära slänten, men mekanismen sträcker sig en bit in i densamma. Brottmekanismen förefaller bli ytligare än i fallet $c_u=10$ kPa.

Typiska brottmekanismer för fallet c_u=10+1,5z kPa med ytlasten längre bort från det ena släntkrönet framgår i Figur 18 och Figur 19. I båda scenarierna erhålls i 2D-situationen brottmekanismer som i huvudsak har formen av en cirkelbåge som slår upp i schaktbotten nära den främre släntfoten. I det förra scenariot, för vilket schaktdjupet är större än i det senare scenariot, erhålls i 3D-situationen en brottmekanism som involverar primärslänten och delar av den bakomliggande ytlasten, men ytterligare en brottmekanism är på väg att utbildas i sekundärslänten. I det kritiska symmetritvärsnittet har brottmekanismen i huvudsak formen av en

cirkelbåge som slår upp i schaktbotten nära den främre släntfoten. I det senare scenariot, för vilket schaktdjupet är större än i det förra scenariot, är involveras ytlasten i ännu mindre omfattning och ånyo är ytterligare en brottmekanism på väg att utbildas i sekundärslänten.

Typiska brottmekanismer för fallet $c_u=20$ kPa med ytlasten strax bakom den ena släntkrönet framgår i Figur 20. Brottmekanismen uppvisar samma huvuddrag som i fallet $c_u=10$ kPa med ytlasten strax bakom det ena släntkrönet.

Typiska brottmekanismer för fallet $c_u=20$ kPa med ytlasten längre bort från det ena släntkrönet framgår i Figur 21. Brottmekanismen uppvisar samma huvuddrag som i fallet $c_u=20$ kPa med ytlasten strax bakom det ena släntkrönet.

 Figur 13. 2D-schakt och 3D-schakt för Scenario 4a (detaljerade förutsättningar framgår i Figur 7).
 Överst: Beräkningsmodell och brottmekanism vid 2D-schakt.

Mitten: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

Figur 14. 2D-schakt och 3D-schakt för Scenario 4c (detaljerade förutsättningar framgår i Figur 7). Överette Benälmingsmodell och hvettmekanism vid 2D schakt

Överst: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

 Figur 15. 2D-schakt och 3D-schakt för Scenario 4e (detaljerade förutsättningar framgår i Figur 7).
 Överst: Beräkningsmodell och brottmekanism vid 3D-schakt.
 Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

Figur 16. 2D-schakt och 3D-schakt för Scenario 4f (detaljerade förutsättningar framgår i Figur 7). Överst: Berökningsmodell och brottmekanism vid 3D schakt

Överst: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

Figur 17. 2D-schakt och 3D-schakt för Scenario 4i (detaljerade förutsättningar framgår i Figur 7).
Överst: Beräkningsmodell och brottmekanism vid 2D-schakt.
Mitten: Beräkningsmodell och brottmekanism vid 3D-schakt.
Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

Figur 18. 2D-schakt och 3D-schakt för Scenario 4k (detaljerade förutsättningar framgår i Figur 7). Överst: Berökningsmodell och brottmekanism vid 3D schakt

Överst: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

Figur 19. 2D-schakt och 3D-schakt för Scenario 4l (detaljerade förutsättningar framgår i Figur 7). Överst: Beräkningsmodell och brottmekanism vid 3D schakt

Överst: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

Figur 20. 2D-schakt och 3D-schakt för Scenario 40 (detaljerade förutsättningar framgår i Figur 7).

Överst: Beräkningsmodell och brottmekanism vid 2D-schakt. Mitten: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

on 2018 0 0 0 Output Version 2018 0.0.0 cremental displacements |Δu| ue = 0,3223 m (Element 4981 at Node 8193) alue of 20.00 kN PLAXIS Planta State Planta S 2020-10-17 2020-10-17 PLAXIS 71 Skanska Sverige AB 91 Skanska Sverige AB Fr_medium mesh kon 2318.0.0.3 Output Version 2018 0.0.0 9 ⁵] 276(4) 246,00 246,00 256,00 166,00 166,00 146,00 166,00 166,00 166,00 166,00 166,00 166,00 166,00 166,00 mental deviatoric strain Δγ_g = = 0,1966 (Element 4988 at Node 27) 9,04004*10 ⁴ (Element 38884 -*** ement 17699 at No Element 38900 = 0,2694 (E ,6979*10⁻⁶ (PLAXIS 2020-10-17 2020-10-17 PLAXIS 91 Skanska Sverige AB 47 Skanska Sverige AB 1m Fr medium mesh

 Figur 21. 2D-schakt och 3D-schakt för Scenario 4q (detaljerade förutsättningar framgår i Figur 7).
 Överst: Beräkningsmodell och brottmekanism vid 3D-schakt.
 Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

4.4 Schakt i form av rektangulär schaktgrop för exempelvis brosstöd med eventuell ytlast på ena kortsidan

Detta huvudscenario kan ses som en variant av huvudscenariot "Schakt i form av kvadratisk schaktgrop...". Den enda skillnaden är att schaktbottenlängden är 12,0 m istf 5,0 m.

I de fall som den kritiska brottmekanismen utbildas i slänten framför ytlasten är mekanismen likartad med den som erhålls för den kvadratiska schaktgropen – undantaget att brottmekanismen inte når fram till motstående sidas släntfot, jfr Figur 22 och Figur 14. I flertalet fall utbildas dock brottmekanismen i den sekundära slänten/långsidan, jfr Figur 23 och Figur 18. Detta beror på att i dessa fall blir sekundärsläntens större krönlängd mer kritisk än det tillkommande pådrivande bidraget från den ytlast som är placerad bakom primärslänten/kortsidan.

4.5 Långsträckt ledningsschakt med lokal ytlast

Typiska brottmekanismer för fallet $c_u=10$ kPa med ytlasten strax bakom släntkrönet framgår i Figur 24. I såväl 2D- som 3D-situationen har brottmekanismen i huvudsak formen av en cirkelbåge i de kritiska symmetritvärsnitten och når fram till den bortre släntfoten. I 3Dsituationen sträcker sig brottmekanismen åtskilliga meter utanför den del av slänten som belastas av 3D-ytlasten.

Typiska brottmekanismer för fallet c_u=10 kPa med ytlasten längre bort från släntkrönet framgår i Figur 25 och Figur 26. I båda scenarierna erhålls i 2D-situationen brottmekanismer som i huvudsak har formen av en cirkelbåge som når fram till motstående sidas släntfot. I det förra scenariot, för vilket schaktdjupet är större än i det senare scenariot, erhålls i 3D-situationen en brottmekanism som når fram till schaktbotten i det kritiska symmetritvärsnittet, men mekanismen har inte formen av en cirkelbåge. Brottmekanismen sträcker sig åtskilliga meter utanför den del av slänten som belastas av ytlasten. I det senare scenariot, för vilken schaktdjupet är grundare än i det förra scenariot, erhålls i 3D-situationen en brottmekanism som inte når fram till schakten - istället är det en brottmekanism motsvarande "lokal bärighet" som är mest kritisk.

Typiska brottmekanismer för fallet $c_u=10+1,5z$ kPa med ytlasten strax bakom respektive längre bort från släntkrönet framgår i Figur 27 och Figur 28. I såväl 2D- som 3D-situationen har brottmekanismen i huvudsak formen av en cirkelbåge i de kritiska symmetritvärsnitten och slår upp i schaktbotten. I 3D-situationen sträcker sig brottmekanismen åtskilliga meter utanför den del av slänten som belastas av ytlasten.

Typiska brottmekanismer för fallet c_u=20 kPa med ytlasten strax bakom respektive längre bort från släntkrönet framgår i Figur 29 och Figur 30. I såväl 2D- som 3D-situationen har brottmekanismen i huvudsak formen av en cirkelbåge i de kritiska symmetritvärsnitten och når fram till motstående sidas släntfot. I 3D-situationen sträcker sig brottmekanismen åtskilliga meter utanför den del av slänten som belastas av ytlasten.

Figur 22. 2D-schakt och 3D-schakt för Scenario 3c (detaljerade förutsättningar framgår i Figur 7).

Överst: Beräkningsmodell och brottmekanism vid 3D-schakt. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-schakt.

Figur 23. 2D-schakt och 3D-schakt för Scenario 3k (detaljerade förutsättningar framgår i Figur 7). Beräkningsmodell och brottmekanism vid 3D-schakt. Notera att brottmekanismen utbildas i sekundärslänten.

Figur 24. 2D-schakt och 3D-schakt för Scenario 1a (detaljerade förutsättningar framgår i Figur 7). Överet: Perökningsmodell och brottmekanism vid 2D vtlast

Överst: Beräkningsmodell och brottmekanism vid 2D-ytlast. Mitten: Beräkningsmodell och brottmekanism vid 3D-ytlast. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-ytlast.

Figur 25. 2D-schakt och 3D-schakt för Scenario 1c (detaljerade förutsättningar framgår i Figur 7). Överette Benälmingsmodell och hvettmekanism vid 2D villagt

Överst: Beräkningsmodell och brottmekanism vid 3D-ytlast. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-ytlast.

Figur 26. 2D-schakt och 3D-schakt för Scenario 1d (detaljerade förutsättningar framgår i Figur 7). Överette Benälminger odell och husttmehenism mid 2D ettlagt

Överst: Beräkningsmodell och brottmekanism vid 3D-ytlast. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-ytlast.

36/110

Figur 27. 2D-schakt och 3D-schakt för Scenario 1e (detaljerade förutsättningar framgår i Figur 7).

Överst: Beräkningsmodell och brottmekanism vid 3D-ytlast. Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-ytlast.

Figur 28. 2D-schakt och 3D-schakt för Scenario 1g (detaljerade förutsättningar framgår i Figur 7).
Överst: Beräkningsmodell och brottmekanism vid 3D-ytlast.
Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-ytlast.

Figur 29. 2D-schakt och 3D-schakt för Scenario 1i (detaljerade förutsättningar framgår i Figur 7).
Överst: Beräkningsmodell och brottmekanism vid 3D-ytlast.
Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-ytlast.

39/110

Figur 30. 2D-schakt och 3D-schakt för Scenario 1k (detaljerade förutsättningar framgår i Figur 7).
Överst: Beräkningsmodell och brottmekanism vid 3D-ytlast.
Nederst: Brottmekanism i symmetriplanet vid 3D- respektive 2D-ytlast.

5 Förslag på förenklade beräkningsmetoder

5.1 Inledning

Som framgår i Kapitel 4.2-4.4 förefaller de tre huvudscenarier som omfattar lokal 3D-schakt från ursprunglig markyta, med eller utan lokal 3D-ytlast, att resultera i brottmekanismer som är mer eller mindre "instängda" av "sekundärslänterna". Därför förefaller en förenklad beräkningsmetod för sådana situationer i huvudsak kunna baseras på de samband och diagram som redovisas i Gens et al (1988). Därmed förefaller även Ekvation 1 vara tillämpbar. En viss pragmatisk värdering/anpassning behövs dock mht följande aspekter eftersom dessa ej beaktas i den artikeln:

- Det finns ingen exakt gräns mellan den kritiska delsträckan och anslutande "oändligt överstarka" delsträckor.
- 3D-ytlaster (när så är aktuellt)
- Fyllning ovan leran
- Lera med varierande hållfasthet

I efterföljande Kapitel 5.2-5.4 berörs ovannämnda aspekter och föreslås pragmatiska anpassningar samt redovisas jämförelser mellan säkerheten beräknad enligt de föreslagna förenklade beräkningsmetoderna respektive mha 3D-FEM. Enbart 3D-brottmekanismer som omfattar schaktgropen studeras - således berörs ej de scenarier som resulterat i en brottmekanism i form av "lokal bärighet".

Som framgår i Kapitel 4.5 förefaller det huvudscenario som omfattar lokal 3D-ytlast i kombination med en 2D-schakt att resultera i brottmekanismer som delvis involverar anslutande överstarka (dock ej "oändligt överstarka") delsträckor. Således behöver förenklade beräkningsmetoder beakta anslutande delsträckors stabilitetsförhållande. I efterföljande Kapitel 5.5 föreslås fyra förenklade metoder samt redovisas jämförelser mellan den beräknade säkerheten enligt dessa metoder respektive mha 3D-FEM. Enbart 3D-brottmekanismer som omfattar schaktgropen studeras - således berörs ej de scenarier som resulterat i en brottmekanism i form av "lokal bärighet".

Erhållna totalsäkerhetsfaktorer från analyserna mha 3D-FEM (och enligt övriga 2D-analyser) är sammanställda i Bilaga F. Vid beräkning av totalsäkerhetsfaktorn mha 3D FEM uppnår "totalsäkerhetskurvorna" i vissa fall inte något tydligt maxvärde, se exemplet i Figur 31. Vid jämförelse av "totalsäkerhetskurvorna" erhållna vid modellering av 2D-situationer i både PLAXIS 2D (där maxvärden erhölls) respektive PLAXIS 3D noterades dock att en relativt god överensstämmelse erhålls genom att utvärdera totalsäkerhetsfaktorn enligt Figur 31. Detta tillvägagångssätt har även fördelen att det är ett någorlunda objektivt sätt att utvärdera säkerheten. Samtliga 2D-situationer analyserades även mha Slope/W (beräkningsmodell Morgenstern-Price) varvid det noterades att de på detta sätt beräknade 2D-totalsäkerhetsfaktorerna som mest skiljer sig några enstaka hundradelar jämfört med PLAXIS 2D.

Figur 31. Exempel på utvärdering av totalsäkerhetsfaktorn. Blå kurvor är de beräknade "totalsäkerhetskurvorna" medan de röda linjernas skärningspunkt med ordinatan utgör den utvärderade totalsäkerhetsfaktorn.

5.2 Etappvis schakt, ledningsläggning och återfyllning

5.2.1 Gens-metoden

Gens et al (1988) redovisar diverse diagram som är uppbyggda enligt Ekvation 2 nedan.

$$F_{3D} = N_{O,3D} \cdot \frac{c_u}{\gamma \cdot H_{schakt}}$$

Ekvation 2

Ekvationen förutsätter bl.a. att jorden består av homogen lera och att brottmekanismen endast kan utbildas inom den kritiska delsträckans (schaktens) längd. Geometrifaktorn $N_{0,3D}$ är en funktion av släntlutningen, schaktdjupet i förhållande till djupet till lerans underkant (dock finns ett "kritiskt förhållande" under vilket $N_{0,3D}$ inte påverkas) samt schaktens längd i förhållande till dess djup. För aktuell släntlutning (1:1,5) och förutsatt att 3D-brottmekanismen ej påverkas av ett begränsat lerdjup och/eller en begränsad schaktbottenbredd kan sambandet enligt Figur 32 konstrueras ur diagrammen i Gens et al (1988). Som jämförelse kan noteras att för fallet $L_{schakt}/H_{schakt} \rightarrow \infty$ erhålls $N_{0,3D} \rightarrow 5,53$ vilket är som förväntat.

Vid utvärderingen av $N_{0,3D}$ ur Figur 32 förefaller det rimligt (mht brottmekanismernas utbredning, jfr Kapitel 5.2) att L_{schakt} är större än schaktens längd i nivå med dess botten, men mindre än dess längd i nivå med markytan. En pragmatisk ansats är att ansätta L_{schakt} = L_{schaktbotten,ekvivalent}, där L_{schaktbotten,ekvivalent} definieras i Figur 33. Fyllningens/friktionsjordens pådrivande bidrag skall självklart inkluderas i nämnaren i Ekvation 2. Förenklat antas att även friktionsjorden bidrar till skjuvmotståndet (dvs som om den vore en lera) genom att inkludera dess mäktighet i H_{schakt} vid utvärderingen av N_{0,3D}.

Ovan beskrivna förenklade beräkningsmetod och antaganden resulterar i 3D-säkerhetsfaktorer enligt Figur 34 och Figur 35 för fallen $c_u=10$ kPa respektive $c_u=20$ kPa. Som framgår erhålls en god överensstämmelse med resultaten enligt 3D-FEM.

Gens et al (1988) hanterar ej fallet c_u=10+1,5z kPa. Ett pragmatiskt sätt att hantera detta är dock att inledningsvis bestämma 2D-säkerheten för den kritiska glidytan förutsatt 2D-förhållanden mha traditionell glidyteberäkning (Slope/W) och därefter "bakåträkna" det (konstanta) ekvivalenta värde på den odränerade skjuvhållfastheten som resulterar i att samma kritiska glidyta får samma säkerhetsfaktor. Därefter beräknas 3D-säkerheten för denna glidyta och ekvivalenta hållfasthet med den förenklade metoden enligt samma förfarande som i övriga fall. Trots denna tillkommande förenkling (som säkerligen har sina begränsningar) erhålls dock även i dessa fall en relativt god överensstämmelse med resultaten enligt 3D-FEM, se Figur 34 och Figur 35. Som framgår finns det en tydlig trend att överskattningen ökar med minskad schaktlängd vilket torde bero på att 3D-glidytan blir grundare med minskad schaktlängd.

Det ovan beskrivna förenklade beräkningsmetoden resulterar förvisso i 3D-säkerhetsfaktorer som är snarlika de som erhålls mha 3D-FEM. En smärre överskattning erhålls dock så gott som genomgående. Detta torde (åtminstone delvis) bero på att Gens et al (1988) förutsätter att jordprofilen utgörs av enbart lera medan analyserna i 3D-FEM förutsätter 1 m fyllning/friktionsjord ovan leran. Denna fyllning modelleras dessutom som en vertikal randspänning (stavlast) i FE-analyserna vilket innebär att den därmed ej bidrar med något skjuvmotstånd. Således förefaller det rimligt att överskattningen ökar med ökande andel fyllning ovan schaktbotten. Så förefaller även vara fallet, jfr Figur 36. Detta skulle i princip kunna beaktas genom att införa en multiplikator (≤1,0) som hanterar detta i analogi med hur randspänningar hanteras i Janbus "direktmetod" vid 2D-förhållanden. Så har dock ej gjorts inom ramen för detta SBUF-projekt eftersom fyllningen i realiteten bidrar till mothållet. Dessutom anses att den förenklade beräkningsmetoden trots allt leder till tillfredsställande resultat utan införande av en sådan multiplikator – åtminstone för de studerade scenarierna.

Figur 32. Geometrifactorns $N_{0,3D}$ variation med kvoten mellan schaktens längd och dess djup.

Figur 33. Definitionen av L_{Schaktbotten, ekvivalent} för förenklad beräkning av 3D-stabiliteten.

Figur 34. Etappvis schakt, ledningsläggning och återfyllning. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (Gens-metoden) och enligt 3D-FEM. De angivna måtten vi respektive datapunkt avser schaktbottenlängden.

Figur 35. Etappvis schakt, ledningsläggning och återfyllning. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (Gens-metoden) och enligt 3D-FEM.

Figur 36. Etappvis schakt, ledningsläggning och återfyllning. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (Gens-metoden) och enligt 3D-FEM.

5.2.2 Korrigerade 3:95-ekvationen

Beräkningarna utförs som traditionella 2D-analyser i Slope/W, varefter "3D-effekten" beaktas mha Ekvation 1Ekvation 1. Den glidyta som resulterar i den lägsta 2D-säkerhetsfaktorn resulterar dock inte nödvändigtvis i den lägsta 3D-säkerhetsfaktorn. Därför måste beräkningarna upprepas för andra (grundare) 2D-glidytor till dess att den lägsta 3D-säkerhetsfaktorn erhålls.

Ovan beskrivna förenklade beräkningsmetod och antaganden resulterar i 3D-säkerhetsfaktorer enligt Figur 37 och Figur 38 för fallen $c_u=10$ kPa respektive $c_u=20$ kPa. Som framgår erhålls en god överensstämmelse med resultaten enligt 3D-FEM.

Fallet $c_u=10+1,5z$ kPa hanteras på samma sätt som för Gens-metoden, jfr Kapitel 5.2.1 när det gäller den ekvivalenta skjuvhållfastheten. Som framgår i Figur 37 och Figur 38 erhålls en god överensstämmelse med resultaten enligt 3D-FEM. I princip skulle en mer nyanserad beräkning av den ekvivalenta skjuvhållfastheten (eller snarare de resulterande mothållande momenten pga skjuvspänningarna längs de plana ändytorna) kunna göras genom (numerisk) integration. Detta är dock relativt tidskrävande och eftersom Ekvation 1 baseras på Gens et al (1998), där genomgående förutsätts en konstant odränerad skjuvhållfasthet, är det oklart huruvida ett sådant merarbete medför något mervärde.

Denna metod leder genomgående till något lägre säkerhetsfaktorer än Gens-metoden. Eftersom de två metoderna baseras på olika grad och typ av förenklingar kan skillnaderna bero på fler orsaker. En tänkbar (del)orsak till skillnaden kan dock vara att fyllningens bidrag till skjuvmotståndet försummas vid nyttjandet av den Korrigerade 3:95-ekvationen.

Figur 37. Etappvis schakt, ledningsläggning och återfyllning. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (korrigerad 3:95-ekvation) och enligt 3D-FEM. De angivna måtten vi respektive datapunkt avser schaktbottenlängden.

Figur 38. Etappvis schakt, ledningsläggning och återfyllning. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (korrigerad 3:95-ekvation) och enligt 3D-FEM.

5.3 Schakt i form av kvadratisk schaktgrop för exempelvis pumpstation med eventuell ytlast på ena sidan

5.3.1 Gens-metoden

Även för detta huvudscenario tillämpas den förenklade beräkningsmetod som beskriv i Kapitel 5.2. I flertalet fall tillkommer dock en 3D-ytlast vars intensitet och avstånd från släntkrönet varierar samtidigt som den antas verka inom hela delsträckan $L_{schaktbotten,ekvivalent}$. Denna ytlasts pådrivande bidrag skall självklart inkluderas i nämnaren i Ekvation 2. Som framgår i Kapitel 4.3 blir 3D-brottmekanismen dock mer "långsmal" ju längre bakom släntkrönet ytlasten är belägen. Detta ökar "3D-effekten" – allt annat lika - vilket skall avspeglas i ett ökande värde på $N_{0,3D}$. För att kunna beakta detta inom ramen för det samband som framgår i Figur 32 behöver denna 3D-effekt inkluderas i H_{schakt} i den figuren. En pragmatisk ansats för att beakta ytlastens pådrivande bidrag (nämnaren i Ekvation 2) *och samtidigt* dess bidrag till ett ökat $N_{0,3D}$ (Figur 32) är att först "jämna ut" ytlasten till en ekvivalent ytlast q_{ekvivalent} enligt definitionen i Figur 39. Den ekvivalenta ytlasten adderas till övriga pådrivande bidrag i nämnaren i Ekvation 2. Innan utvärdering av $N_{0,3D}$ omvandlas den ekvivalenta ytlasten till "schaktdjuptillägget" q_{ekvivalent}/γ_{Lera}, vilket adderas till verklig H_{schakt} så att $H_{schakt,ekvivalent}$ erhålls. Därefter kan $N_{0,3D}$ utvärderas, men baserat på kvoten mellan $L_{schaktbotten,ekvivalent}$ och $H_{schakt,ekvivalent}$. Således antas att 3D-ylastens pådrivande bidrag verkar längs hela $L_{schaktbotten,ekvivalent}$.

Det ovan beskrivna förfarande resulterar i 3D-säkerhetsfaktorer enligt Figur 40, Figur 41 och Figur 42. Som framgår erhålls en god överensstämmelse med resultaten enligt 3D-FEM. För scenarierna med konstant hållfasthetsprofil och ytlasten förlagd en bit bakom släntkrönet erhålls en viss underskattning, vilket torde bero på att den förenklade metoden underskattar gaveleffekten i dessa fall. Som framgår i Kapitel 4.3 är gaveleffekten i ett av dessa fall till och med så stor att den kritiska brottmekanismen inte omfattar schaktslänten (dvs Ekvation 2 är ej relevant för det scenariot varför det ej redovisas i Figur 40, Figur 41 och Figur 42).

Det bör noteras att ovan beskrivna förfarande att beakta 3D-ytlasten innebär att flera "förenklingsfel" ungefär balanserar varandra. Således är förfarandet inte tillämpligt i 2Dsituationer och det har säkerligen sina begränsningar även i 3D-situationer.

Figur 39. Definitionen av q_{ekvivalent} för förenklad beräkning av 3D-stabiliteten.

Figur 40. Schakt i form av kvadratisk schaktgrop för exempelvis pumpstation med eventuell ytlast på ena sidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod och enligt 3D-FEM.

Figur 41. Schakt i form av kvadratisk schaktgrop för exempelvis pumpstation med eventuell ytlast på ena sidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (Gens-metoden) och enligt 3D-FEM.

Figur 42. Schakt i form av kvadratisk schaktgrop för exempelvis pumpstation med eventuell ytlast på ena sidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (Gens-metoden) och enligt 3D-FEM.

5.3.2 Korrigerade 3:95-ekvationen

Beräkningarna utförs enligt det förfarande som beskrivs i Kapitel 5.2.2, vilket resulterar i 3Dsäkerhetsfaktorer enligt Figur 43 och Figur 44. Som framgår erhålls i huvudsak en god överensstämmelse med resultaten enligt 3D-FEM. I några fall är överensstämmelsen inte riktigt lika god som i övrigt, vilket torde bero på att såväl schaktdjupet som ytlastens intensitet är förhållandevis stora i dessa fall. Detta medför att kortsidornas slänter blir relativt långa, vilket medför att den antagna kritiska delsträckans längd överskattas. Detta leder i sin tur till en underskattad 3D-effekt.

Figur 43. Schakt i form av kvadratisk schaktgrop för exempelvis pumpstation med eventuell ytlast på ena sidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (korrigerad 3:95-ekvation) och enligt 3D-FEM.

Figur 44. Schakt i form av kvadratisk schaktgrop för exempelvis pumpstation med eventuell ytlast på ena sidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (korrigerad 3:95-ekvation) och enligt 3D-FEM.

5.4 Schakt i form av rektangulär schaktgrop för exempelvis brosstöd med eventuell ytlast på ena kortsidan

5.4.1 Gens-metoden

Även för detta huvudscenario tillämpas den förenklade beräkningsmetod som beskriv i Kapitel 5.2, dock med de tillägg som beskrivs i Kapitel 5.4 när så är relevant. Som framgår i Kapitel 4.4 utbildas den kritiska brottmekanismen i vissa fall i slänten framför ytlasten, men i flertalet fall utbildas brottmekanismen i den sekundära slänten eftersom den har större krönlängd än slänten på kortsidan. Detta har beaktats vid de förenklade beräkningar som resulterar i 3D-säkerhetsfaktorer enligt Figur 45, Figur 46 och Figur 47. Som framgår erhålls även för dessa scenarier i huvudsak en god överensstämmelse med resultaten enligt 3D-FEM – dock med motsvarande observationer och kommentarer som vid tidigare beskrivna huvudscenarier.

Figur 45. Schakt i form av rektangulär schaktgrop för exempelvis brosstöd med eventuell ytlast på ena kortsidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (Gens-metoden) och enligt 3D-FEM.

Figur 46. Schakt i form av rektangulär schaktgrop för exempelvis brosstöd med eventuell ytlast på ena kortsidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (Gens-metoden) och enligt 3D-FEM.

Figur 47. Schakt i form av rektangulär schaktgrop för exempelvis brosstöd med eventuell ytlast på ena kortsidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (Gens-metoden) och enligt 3D-FEM.

5.4.2 Korrigerade 3:95-ekvationen

Beräkningarna utförs enligt det förfarande som beskrivs i Kapitel 5.2.2, vilket resulterar i 3Dsäkerhetsfaktorer enligt Figur 48 och Figur 49. Som framgår erhålls i huvudsak en god överensstämmelse med resultaten enligt 3D-FEM – ånyo med motsvarande observationer och kommentarer som vid tidigare beskrivna huvudscenarier.

Figur 48. Schakt i form av rektangulär schaktgrop för exempelvis brosstöd med eventuell ytlast på ena kortsidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (korrigerad 3:95-ekvation) och enligt 3D-FEM.

Figur 49. Schakt i form av rektangulär schaktgrop för exempelvis brosstöd med eventuell ytlast på ena kortsidan. Jämförelse mellan beräknad 3D-säkerhet enligt förenklad beräkningsmetod (korrigerad 3:95-ekvation) och enligt 3D-FEM.

5.5 Långsträckt ledningsschakt med lokal ytlast

5.5.1 Inledning

I detta fall involverar 3D-brottmekanismen såväl den kritiska delsträckan som omgivande ändligt överstarka delsträckor. För att beakta denna aspekt erfordras någon form av "viktning" av stabilitetsförhållandena inom respektive delsträcka. Detta kan göras på många sätt, men i samtliga nedan föreslagna förenklade beräkningsmetoder nyttjas (åtminstone) den kritiska delsträckans minsta 2D-säkerhetsfaktor (F_{2D,kritisk,min}) och de anslutande överstarka delsträckornas minsta 2D-säkerhetsfaktor (F_{2D,överstark,min}).

5.5.2 Medelvärdesmetoden

En mycket grov ansats, vilken bortser från den kritiska delsträckans längd, är att helt enkelt vikta 2D-säkerheten för de två delsträckorna enligt Ekvation 3 nedan.

$$F_{3D} = \frac{F_{2D,kritisk,min} + F_{2D,överstark,min}}{2}$$
 Ekvation 3

Ekvationen ovan resulterar i 3D-säkerhetsfaktorer enligt Figur 50. Som framgår erhålls en god överensstämmelse med resultaten enligt 3D-FEM för fallen med ytlast strax bakom släntkrönet. Även för scenarierna med ytlasten längre bort från släntkrönet erhålls en relativt god överensstämmelse med 3D-FEM.

Figur 50. Långsträckt ledningsschakt med lokal ytlast. Jämförelse mellan beräknad 3Dsäkerhet enligt förenklad beräkningsmetod (Medelvärdesmetoden) och enligt 3D-FEM.

56/110

5.5.3 N:1-metoden

Medelvärdesmetoden (Ekvation 3) beaktar inte den kritiska delsträckans längd, vilket rimligen är en parameter som påverkar 3D-stabiliteten. Således är den metodens tillämpningsområde begränsat. Som framgår i Edstam (2018) förefaller dock Ekvation 4 nedan, vilken beaktar den kritiska delsträckans längd, kunna användas för att uppskatta 3D-säkerheten för fallet konsolspont.

 $F_{3D} = \frac{F_{2D,kritisk,min'L_{kritisk}+F_{2D,\"overstark,min'L_{\"overstark}}}{L_{kritisk}+L_{\`overstark}} Ekvation 4$

 $L_{overstark}$ är en "modellparameter" som saknar exakt geometrisk betydelse men för kvoten $F_{2D,overstark,min}/F_{2D,kritisk,min} = 1,0$ (vilket är identiskt med en 2D-situation) blir $L_{overstark}$ oändligt lång. Med ökande kvot $F_{2D,overstark,min}/F_{2D,kritisk,min}$ minskar $L_{overstark}$, men teoretiskt minskar den aldrig till exakt noll eftersom 3D-effekten annars inte beaktas. I Figur 51 framgår "bakåträknad" $L_{overstark}$ från Ekvation 4 baserat på resultatet från analyserna med 3D-FEM. Som förväntat finns en generell trend att $L_{overstark}$ minskar när kvoten $F_{2D,overstark,min}/F_{2D,kritisk,min}$ ökar.

Det förefaller dock rimligt att 3D-brottmekanismens utbredning inom de intilliggande överstarka delsträckorna även påverkas av 3D-brottmekanismens största djup i det kritiska symmetritvärsnittet. Som framgår i figurerna i Kapitel 4.5 och i Bilaga E är dock 2D-brottmekanismens och 3D-brottmekanismens största djup någorlunda lika i det kritiska symmetritvärsnittet i flertalet fall. Ett approximativt sätt att beakta detta är att, istället för att direkt använda bakåträknad L_{överstark} enligt Ekvation 4, använda den bakåträknade lutningen "N", med definition enligt Figur 52, som underlag för beräkning av L_{överstark} och slutligen beräkning av 3D-säkerheten enligt Ekvation 4.

Den bakåträknade lutningens "N" variation med kvoten F_{2D,överstark,min}/F_{2D,kritisk,min} framgår i Figur 53, i vilken även redovisas det approximativa samband som nyttjas vid den efterföljande beräkningen av L_{överstark} och slutligen F_{3D} mha Ekvation 4. Resulterande 3D-säkerhetsfaktorer enligt detta förfarande framgår i Figur 54 i vilka även redovisas 3D-säkerhetsfaktorn beräknad enligt Medelvärdesmetoden. Som framgår ger N:1-metoden generellt en god överensstämmelse med resultaten från 3D-FEM. Dessutom är överensstämmelsen huvudsakligen bättre än med Medelvärdesmetoden.

Figur 51. Långsträckt ledningsschakt med lokal ytlast. Parameterns $L_{överstark}$ variation med kvoten $F_{2D, överstark} / F_{2D, kritisk}$ från "bakåträkning" mha Ekvation 4.

Figur 52. Långsträckt ledningsschakt med lokal ytlast. Definitionen av parametern "N" på basis av den kritiska 2D-glidytans maximala djup.

Figur 53. Långsträckt ledningsschakt med lokal ytlast. Parameterns "N" variation med kvoten F_{2D, överstark} / F_{2D, kritisk} från "bakåträkning" mha Ekvation 4 och definitionen av "N" i Figur 53.

Figur 54. Långsträckt ledningsschakt med lokal ytlast. Jämförelse mellan beräknad 3Dsäkerhet enligt några förenklade beräkningsmetoder (Medelvärdesmetoden och N:1-metoden) och enligt 3D-FEM.

5.5.4 Nyanserade Gens-metoden

Det vore önskvärt med en förenklad beräkningsmetod som kan tillämpas för samtliga studerade huvudscenarier. Som tidigare nämnts behöver en sådan metod beakta (åtminstone) den kritiska delsträckans längd och 2D-säkerhet samt omgivande delsträckors 2D-säkerhet. Förutsatt att de omgivande delsträckorna har begränsad 2D-säkerhet förefaller N:1-metoden kunna hantera detta. Om de omgivande delsträckorna har oändlig 2D-säkerhet behöver den metoden dock generaliseras för att kunna tillämpas på ett stringent sätt även för sådana fall. Detta har dock inte studerats inom ramen för detta projekt. Istället har fokus lagts på att generalisera de tidigare beskrivna Gens-metoden respektive Korrigerade 3:95-ekvationen.

Som framgår i Figur 55 skulle man kunna betrakta N₀ för 2D-förhållanden ($F_{2D,kritisk,min}/F_{2D,överstark,min}=1$) och N₀ för 3D-förhållanden enligt Gens et al (1988; $F_{2D,kritisk,min}/F_{2D,överstark,min}=0$) som extremvärdena för N₀. Således skulle ett mer generellt uttryck för N_{0,3D} ingående i Ekvation 2 kunna formuleras enligt Ekvation 5 nedan.

$$N_{0,3D} = N_{0,2D} + f(\frac{F_{2D,kritisk,min}}{F_{2D,överstark,min}}) \cdot (N_{0,3D,Gens}(\frac{L_{kritisk}}{H_{schakt}}) - N_{0,2D})$$
 Ekvation 5

Som framgår ur Figur 32 är $N_{0,3D,Gens}\left(\frac{L_{kritisk}}{H_{schakt}}\right)$ en olinjär funktion (som dessutom är en funktion av släntlutningen, mm, se Gens et al, 1988). När det gäller f $\left(\frac{F_{2D,kritisk,min}}{F_{2D,överstark,min}}\right)$ finns inget självklart funktionsuttryck. Ett tänkbart uttryck, som uppfyller ovannämnda extremvärdesscenarier, är dock enligt Ekvation 6 nedan.

$$N_{0,3D} = N_{0,2D} + \left(1 - \frac{F_{2D,kritisk,min}}{F_{2D,överstark,min}}\right)^{\alpha} \cdot \left(N_{0,3D,Gens}\left(\frac{L_{kritisk}}{H_{schakt}}\right) - N_{0,2D}\right)$$
 Ekvation 6

Genom att "bakåträkna" $N_{0,3D}$ ur Ekvation 2 baserat på resultaten från analyserna med 3D-FEM erhålls Figur 56. Som framgår tenderar $N_{0,3D}$ att öka med ökande kvot $F_{2D,min,överstark}/F_{2D,min,kritisk}$ - allt annat lika – dvs som förväntat.

Nyttjas Ekvation 6 med α =1,0 erhålls sambanden i Figur 57 i vilken även "bakåträknade" N_{0,3D} redovisas. Som framgår förefaller den linjära ansatsen vara någorlunda rimlig. Det bör dock noteras att antalet "datapunkter" är relativt få och som framgår spänner de även över ett begränsat intervall när det gäller kvoten F_{2D,min,överstark}/F_{2D,min,kritisk} respektive kvoten L_{schaktbotten,ekvivalent}/H_{schakt,ekvivalent}. Detta förbehåll gäller självklart även för tidigare beskriven "Medelvärdesmetod" respektive"N:1-metod".

Resulterande 3D-säkerhetsfaktorer enligt Ekvation 2, med $N_{0,3D}$ enligt Ekvation 6, jämförs med resultaten från 3D-FEM i Figur 58, i vilken även redovisas 3D-säkerhetsfaktorn enligt den tidigare beskriven Medelvärdesmetoden respektive N:1-metoden. Som framgår erhålls generellt god överensstämmelse med resultaten från 3D-FEM även med denna metod.

Figur 55. Schematisk skiss avseende hur N_0 varierar med den kritiska schaktens längd/djupförhållande och 2D-säkerheten för kritisk respektive omgivande delsträcka.

Figur 56. Bakåträknat N_0 med nyttjande av Ekvation 2 och resultaten från analyserna med 3D-FEM för huvudscenariot "Långsträckt ledningsschakt med lokal ytlast".

Figur 57. Bakåträknat N_0 med nyttjande av Ekvation 2 och resultaten från analyserna med 3D-FEM för huvudscenariot "Långsträckt ledningsschakt med lokal ytlast".

Figur 58. Långsträckt ledningsschakt med lokal ytlast. Jämförelse mellan beräknad 3Dsäkerhet enligt några förenklade beräkningsmetoder (Medelvärdesmetoden, N:1metoden samt Nyanserad Gens-metod) och enligt 3D-FEM.

61/110

5.5.5 Korrigerade 3:95-metoden

Eftersom Ekvation 1 är baserad på Gens et al (1998) är det rimligt att tillämpa samma principiella resonemang som i Kapitel 5.5.4 även för denna metod. Således skulle ett mer generellt uttryck för Ekvation 1 kunna formuleras enligt Ekvation 7 nedan, varvid samma funktionsuttryck som för $N_{0,3D}$ har antagits även i detta fall.

$$F_{3D} = F_{2D,kritisk} + \left(1 - \frac{F_{2D,kritisk,min}}{F_{2D,överstark,min}}\right)^{\alpha} \cdot 0,75 \cdot (F_{3D,Plan} - F_{2D,kritisk})$$
 Ekvation 7

Beräknade 3D-säkerhetsfaktorer enligt Ekvation 7, förutsatt α =1,0, jämförs med resultaten från 3D-FEM i Figur 59 och Figur 60, i vilken även redovisas 3D-säkerhetsfaktorn enligt samtliga tidigare beskrivna förenklade metoder. Vid tillämpningen av Ekvation 7 har flera olika 2D-glidytor ansats inom den kritiska delsträckan eftersom den glidyta som ger lägst 3D-säkerhetsfaktor kan vara grundare än den glidyta som ger lägst 2D-säkerhetsfaktor. Som framgår i figurerna erhålls generellt god överensstämmelse med resultaten från 3D-FEM även med denna metod.

Om 3D-säkerhetsfaktorn istället beräknas enligt Ekvation 1, dvs utan beaktande av att omgivande delsträckor har begränsad 2D-säkerhet, erhålls ca 20-60 % högre värden än enligt Ekvation 7 för de aktuella scenarierna. I vissa fall är den på det sättet beräknade 3Dsäkerhetsfaktorn större än omgivande överstarka delsträckors 2D-säkerhetsfaktor, vilket självklart är orimligt. Motsvarande resultat erhålls med nuvarande svensk praxis, med beaktande av omgivande överstarka delsträckors begränsade 2D-säkerhet, enligt den nedre delen av Figur 2. Således får man hoppas att de geotekniker som, under de senaste ca 25 åren, har tillämpat nuvarade svensk praxis har haft ett kritiskt förhållningssätt till beräkningsresultaten och/eller eftersträvat en väl tilltagen 3D-säkerhetsfaktor.

Figur 59. Långsträckt ledningsschakt med lokal ytlast. Jämförelse mellan beräknad 3Dsäkerhet enligt några förenklade beräkningsmetoder (Medelvärdesmetoden, N:1metoden, Nyanserad Gens-metod samt Korrigerade 3:95-metoden) och enligt 3D-FEM.

Figur 60. Långsträckt ledningsschakt med lokal ytlast. Jämförelse mellan beräknad 3Dsäkerhet enligt några förenklade beräkningsmetoder (Medelvärdesmetoden, N:1metoden, Nyanserad Gens-metod samt Korrigerade 3:95-metoden) och enligt 3D-FEM.

6 Övergripande slutsatser och rekommendationer

6.1 Inledning

Denna studie avser stabilitetsförhållandena vid frischakter (släntschakter) i lös lera. Lerans har modellerats som ett "c_u-material", dvs ett material vars hållfasthet definieras av den odränerade skjuvhållfastheten c_u. Således är de redovisade resultaten och slutsatserna endast relevanta för temporära schakter i normalkonsoliderad eller lätt överkonsoliderad lera. Effekten av eventuell förekomst av friktionsjord och/eller överkonsoliderad lera ingår ej i studien – beroende på sådana lagers hållfasthetsegenskaper (de är dessutom ej "c_u-material"), mäktighet och avstånd från ursprunglig markyta samt den rådande portryckssituationen kan 3D-effekten bli såväl betydligt mindre som betydligt större än vad som framgår i den aktuella studien. Inte heller permanenta schakter (eller naturliga slänter) ingår i studien – i sådana fall måste även normalkonsoliderad eller lätt överkonsoliderad på ett mer nyanserat sätt än som ett "c_u-material".

I de studerade scenarierna förbättras stabilitetsförhållandena av 3D-effekten, vilken uppstår till följd av schaktgropens geometri (dess begränsade längd) och/eller anslutande 3D-ytlast (dess begränsade utbredning längs schaktgropen). Gemensamt för samtliga studerade scenarier är att de i huvudsak utgörs av en relativt väldefinierad "kritisk" delsträcka (definierad av dess 2Dtvärsektion, vilken har bristfällig 2D-stabilitet), vilken omges av likaledes relativt väldefinierade "överstarka" delsträckor (båda delsträckorna definierade av identiska 2D-tvärsektioner, dock med tillräckligt stor utbredning vinkelrätt densamma, som har mer än tillräcklig 2D-stabilitet).

Studien omfattar 66 st scenarier som har analyserats med 3D-FEM, med fokus på stabilitetsförhållandena (säkerhetsfaktorn F_{tot}). Dessa scenarier kan grupperas i fyra huvudscenarier, se Tabell 1. Slutsatserna är i strikt mening enbart giltiga för de analyserade scenarierna. Rimligen är slutsatserna dock även giltiga för sådana situationer som är "interpoleringar" mellan de studerade scenarierna. Förhoppningsvis är slutsatserna även giltiga för andra situationer som (inom rimliga gränser) är "extrapoleringar" utanför de studerade scenarierna. I sådana fall bör stabilitetsförhållandena dock även kontrolleras på annat sätt.

6.2 Angående nuvarande branschpraxis

Nuvarande branschpraxis baseras delvis på en felaktig ekvation. Den felaktiga ekvationen har sannolikt medfört resultat som varit mer eller mindre "på säkra sidan", ur ett stabilitetsperspektiv, givet att de byggnadstekniska förhållandena överensstämmer med de förutsättningar som ekvationen baseras på. Vid andra (mindre gynnsamma) förhållandena (vilket torde vara vanligt förekommande i praktiken) medför dock nuvarande branschpraxis, i form av en mer generaliserad variant av ovannämnda ekvation, resultat som, ur ett stabilitetsperspektiv, är på "osäkra sidan" (i vissa fall är resultaten dessutom orimliga).

6.3 Förslag på några alternativa förenklade beräkningsmetoder

De utbildade brottmekanismernas form och utbredning har studerats ingående och utgående från detta har några alternativa förenklade beräkningsmetoder formulerats/kalibrerats, varav en metod i huvudsak är en korrigerad variant av nuvarande branschpraxis. Samtliga metoder är relativt enkla att använda (om än i varierande grad), men varje metod har sina möjligheter och begränsningar, se Tabell 1. Samtliga metoder resulterar, när de är tillämpbara, dock i en säkerhetsfaktor som är inom ca ± 10 % jämfört med den säkerhetsfaktor som erhållits med 3D-FEM.

I första hand bör Korrigerade 3:95-metoden, N:1-metoden eller Nyanserade Gens-metoden användas eftersom de är mer nyanserade jämfört med övriga föreslagna metoder när det gäller hanteringen av situationer där den kritiska delsträckan omges av "överstarka" delsträckor som även de har begränsad 2D-stabilitet.

De föreslagna metoderna kan nyttjas för åtminstone en preliminär uppskattning av storleken på 3D-effekten. Om 3D-säkerhetsfaktorn är i det lägre spannet av vad som anses vara tillfredsställande och/eller om 3D-säkerhetsfaktorn är mer än ca 25% större än den kritiska delsträckans 2D-säkerhetsfaktor bör den erhållna säkerhetsfaktorn värderas med extra stor eftertanke och dessutom bedömas med andra metoder.

	Förenklade beräkningsmetoder						
Huvudscenarier	Gens- metoden	Medelvärdes- metoden	N:1- metoden	Nyanserade Gens- metoden	Korrigerade 3:95-metoden		
Etappvis schakt, ledningsläggning och återfyllning	Ja	Nej	Nej	Ja	Ja		
Kvadratisk schaktgrop, för exempelvis pumpstation, med ytlast på ena sidan	Ja	Nej	Nej	Ja	Ja		
Rektangulär schaktgrop för exempelvis brosstöd med ytlast på ena kortsidan	Ja	Nej	Nej	Ja	Ja		
Långsträckt ledningsschakt med lokal ytlast	Nej	Ja	Ja	Ja	Ja		

Tabell 1. De föreslagna förenklade beräkningsmetodernas tillämpningsområden.

Ja = Tillämpbar; Nej = Ej tillämpbar

6.4 Övrigt

Studien baseras på FE-analyser, vilket innebär att samtliga säkerhetsfaktorer som redovisas är totalsäkerhetsfaktorer. De föreslagna förenklade beräkningsmetoderna kan dock nyttjas även inom ramen för partialkoefficientmetoden.

Inom ramen för detta projekt har det, som förväntat, visat sig att beräkningstiden vid nyttjande av 3D-FEM är väsentligt större än vid nyttjande av 2D-FEM (åtskilliga timmar istället för enstaka minuter per scenario). Eftersom detta var förväntat ägnades inledningsvis en hel del tid åt att identifiera ett antal vanligen förekommande situationer där "3D-effekten" förväntas föreligga och därefter förenkla och generalisera dem till huvudscenarier, hitta ett lagom finindelat elementnät, bestämma beräkningsmodellens yttre geometriska begränsningsytor (varav vissa är "onaturliga"), mm. Till detta kommer att tidsåtgången för att "bygga" varje FE-modell är väsentligt större i 3D än i 2D, varför det gjordes med en viss eftertanke så att modellerna kunde modifieras i ett senare skede utan en alltför omfattande arbetsinsats. Detta visade sig vara en bra strategi eftersom delvis oförutsedda resultat, som krävde "omtag", erhölls vid flera tillfällen. Sammantaget innebär ovanstående att systematiska och omfattande analyser i 3D-FEM bör föregås av en betydligt noggrannare planering än vid analyser i 2D-FEM.

6.5 Förslag på fortsatt arbete

De föreslagna förenklade beräkningsmetoderna baseras på de scenarier som har analyserats mha 3D-FEM. Beräkningsmetodernas tillförlitlighet för andra scenarier går självklart inte att avgöra innan de har studerats. Därför är det önskvärt att ytterligare scenarier systematiskt analyseras med 3D-FEM. Primärt bör metoderna Korrigerade 3:95-metoden, N:1-metoden och Nyanserade Gens-metoden testas/utvärderas och vid behov modifieras och/eller generaliseras.

7 Referenser

Edstam, T. (2018). Etappvis schakt i lös lera med nyttjande av konsolspont och hammarband. Svenska Byggbranschens Utvecklingsfond, Rapport 12340.

Edstam, T., Kullingsjö, A. (2019). Alla goda ting är 3(D)?. Grundläggningsdagen 2019: 40 år av stabil grundläggning - Är krisen på väg (eller järnväg)?, Stockholm, 14 mars, 2019. Svenska Geotekniska Föreningen, SGF.

Gens, A., Hutchinson, J.N., Cavounidis, S. (1988). Three-dimensional analysis of slides in cohesive soils. Geotechnique, Vol. 38, No. 1.

Kullingsjö, A., Tornborg, J. (2020). Nyttan av etappvis schakt inom avsträvade sponter – studie av konceptuella modeller och två referensprojekt. Svenska Byggbranschens Utvecklingsfond, Rapport 12495.

Larsson, R., Bengtsson, P-E., Sällfors, G. (2016). Personlig kommunikation.

Skredkommissionen (1995). Anvisningar för släntstabilitetsutredningar. Ingenjörsvetenskapsakademien, IVA. Skredkommissionen. Rapport 3:95. Linköping.

SS-EN 1997:1 (2005). Eurokod 7: Dimensionering av geokonstruktioner – Del 1: Allmänna regler.

8 Bilagor

Bilaga A - Angående 3D-ekvationen i Skredkommissionen 3:95

I Gens et al (1988) redovisas ett antal diagram, varav ett exempel återges nedan, där. - F₃ = 30-säkerhetsfaktorn [-] - F₇= 20-säkerhetsfaktorn [-] - L= schaktsläintens krönlängd (på örse sidor finns "oändligt överstarka grannar") [m] - H = schaktsläintens höjd [m] 1.7 F₀/F₂ -10 υн Diagrammen antyder matematiska samband enligt (1) och (2) nedan: $\frac{F_{3D_plan}}{F_{2D}} = 1 + f_{plan} \left(\frac{L}{H}\right)$ (1) $\frac{F_{3D \ kalott}}{F_{2D}} = 1 + f_{kalott} \left(\frac{L}{H}\right)$ (2) där: - F_{3D_plan}= 3D-säkerhetsfaktorn förutsatt plana ändytor [-] - F_{3D_katot}= 3D-säkerhetsfaktorn förutsatt krökta ändytor [-] Diagrammen antyder att även om funktionerna f_{plan} och f_{kalott} inte kan uttryckas analytiskt gäller approximativt att: $f_{kalot}\left(\frac{L}{H}\right) = 0.75 \cdot f_{plan}\left(\frac{L}{H}\right)$ (3) (3) i (2) ger: $\frac{F_{3D_kalott}}{F_{2D}} = 1 + 0.75 \text{ f}_{plan} \left(\frac{L}{H}\right)$ (4) Genom att lösa ut funktion f_{plan} ur (1) och sätta in uttrycket för denna funktion i (4) erhålts: $\frac{F_{3D_kaloss}}{F_{2D}} = 1 + 0.75 \cdot f_{Plan} \left(\frac{L}{H}\right) = 1 + 0.75 \cdot \left(\frac{F_{3D_plan}}{F_{2D}} - 1\right)$ (5) vilket kan skrivas om tilt $F_{3D_Jadett} = F_{2D} + F_{2D} \cdot 0.75 \cdot \left(\frac{F_{3D_plan}}{F_{2D}} - 1 \right) = F_{2D} + 0.75 \cdot \left(F_{3D_plan} - F_{2D} \right)$ (6) I Skredkommissionen 3:95 anges dock: $F_{3D_kalott} = F_{2D} + 0.75 \cdot \left(\frac{F_{3D_plan}}{F_{2D}} - 1\right)$ (7)

För att avgöra huruvida (6) eller (7) är korrekt kan följande två resonemang föras:

Resonemang 1: Antapa att det inte skulle vara någon skilhad mellan F_{30, julio} och F_{30, julio} et så fall skulle kurvoma i diagrammen i Gens et al (1988) sammanfalla och "multiplikatom" 0.75 i (3) och därmed även i (6) och (7) rimigen vara exakt 1.0 ist 0.75. Då skulle (8) ge att F_{30, julio} # F_{30, julio} vars som förvånlat för deta "extremtal". Detta resultat ethålis dock inte ur (7). Sädeds är (6) korrekt, men (7) är fel.

Resonemang 2: Genes et al. (1986) Shuttsätter at den odränerade skjunhälfascheten är konstant med djupet. Diegrammen och eventuella maternatiska samband som baseras på dessa diagram är dock oberoende av skjunhälfaschetens absoluta värde. Antag duffer trävasmaler med hälfaschetesiardena q_{uba}respektive q_{uda} samt att förhälandet mellan dessa är v_{ju}-q_{uba}d_{udare}. Eltersom säkerhetsfäktorn avser momenfjärnvik kan (6) utvecklas enigt (8) nedan, väket är som förväntat. Motsvarande förfarande baserat på (7) leder dock inte ill samma förvänlade förhälande. (r) (9) nedan. Säkede sär (6) lovneik, tren (7) är fet.

$F_{3D_kalott_kar_okv_6} = \frac{M_{stab_dim_2D} \cdot \gamma_m}{M_{pkdrivands_2D}} + 0.75 \cdot$	$\frac{\left(\frac{M_{stab_dim_2D} \cdot \gamma_{m}}{M_{pliftwards_2D}} - \frac{2M_{stab_dim} \cdot \gamma_{m}}{L} - \right)}{M_{pliftwards_2D}} - \frac{M_{stab_dim} \cdot \gamma_{m}}{L} - \frac{M_{stab_dim} \cdot \gamma_{m}}{M_{pliftwards_2D}} - \frac{M_{stab_dim} \cdot \gamma_{m}}{M_{stab_dim}} - \frac{M_{stab_dim} \cdot \gamma_{m}}{M_{stab_d$	$-\frac{M_{stab_dim_2D} \cdot \gamma_m}{M_{phdrivande_2D}} = \gamma_m \cdot \left[\frac{M_{stab_dim_2D} \cdot \gamma_m}{M_{phdrivande_2D}}\right]$	$\frac{I_{stab_dim_2D}}{pidrivande_2D} + 0.75 \cdot \left(\frac{M_{stab_dim_2D} + \frac{2M_{sida_dim}}{L}}{M_{pidrivande_2D}} \right)$	$-\frac{M_{abb,dm,2}D}{M_{pldymake,2}D}\Bigg] \equiv \gamma_m \cdot \left[F_{D_{a}dm} + 0.75 \cdot \left(\frac{F_{D_{a}dm,dm}}{F_{D_{a}dm}} - 1\right)\right] \equiv \gamma_m \cdot F_{D_{a}blott_dm_{a}dm_{a}bv_{a}d}$	(8)
$F_{3D_lation_las_elv_{-}7} \equiv \frac{M_{tab_dim_2D}\cdot\gamma_m}{M_{pldivands_2D}} + 0.75 \; . eq:fsd_sd_sd_sd_sd_sd_sd_sd_sd_sd_sd_sd_sd_s$	$ \left(\frac{ \frac{ 2 M_{sida_dim_2D} \gamma_m + \frac{2 M_{sida_dim} \gamma_m}{L} }{ M_{pidivande_2D} } }{ \frac{ M_{sida_dim_2D} \gamma_m }{ M_{pidivande_2D} } } - 1 \right) $	$= \gamma_m \cdot \left[\frac{M_{stab_dim_2D}}{M_{pldrivande_2D}} + \frac{0.75}{\gamma_m} \right]$	$\left(\frac{\underbrace{\frac{2M_{sida_dim}}{L}}_{pidar_{sida_dim}}}{\underbrace{\frac{M_{sida_dim}}{M_{pidar_{sida_dim}}}}_{M_{pidar_{sida_dim}}} - 1 \right) = \gamma_{m} \cdot \left[F_{2D_dim} \right]$	$_{n} + \frac{0.75}{\gamma_{m}} \cdot \left(\frac{F_{1D,jdm,,dm}}{F_{2D,dm}} - 1 \right) \right] \neq \gamma_{m} \cdot F_{2D,kdm,,dm_{m},dm_{m}}$	(9)

Bilaga B – Brottmekanismer från 3D-FEM för fallet etappvis schakt, ledningsläggning och återfyllning

70/110

 $Cu = 10+1,5z \ kPa$

PLAXIS 21_1m Fr_medium mesh

Output Version 2018 0.0.0 Output Version 2018 0.0.0 118,00 108,08 98,00 88,00 78,00 66,00 56,00 46,00 38,00 28,08 18,00 10.00 Incremental deviatoric strain $\Delta \gamma_g$ im value = 0,2991 (Element 22887 at Node 10004) value = 0,01898*10⁻⁶ (Element 42075 at Node 291) Incremental deviatoric strain $\Delta \gamma_g$ mum value = 0,1020 (Element 21278 at Node 10089) num value = 0,02600*10⁻⁸ (Element 43724 at Node 6) PLAXIS 2g_1m Fr_medium mesh 36 Skanska Sverige AB PLAXIS Jacobian 2g_1m Fr_medium mesh 56 Skanska Sverige AB 2020-10-14 2020-10-14 Version 2318 0.0.2 Culput Version 2018 0 0 0 278/08 200,00 180,00 160,00 120,00 100,00 00.00 40,00 20,00 40,00 Incremental deviatoric strain Δγ₉ Maximum value = 0,05515 (Element 14592 at Node 9414) Minimum value = 0,01241*10⁻⁶ (Element 41163 at Node 8701) Increm ntal deviatoric strain $\Delta \gamma_3$ Maximum value = 0,2105 (Element 16181 at Node 16) Minimum value = 0,03281*10 ⁶ (Element 41249 at Node 8857) PLAXIS 2h_1m Fr_medium mesh 38 Skanska Sverige AB PLAXIS 2h_1m Fr_medium mesh 58 Skanska Sverige AB 2020-10-16 2020-10-16 Output Version 2018.0.0.0 Output Version 2018-0.0.0 (*16)²] 150,00 140,00 120,00 120,00 100 Incremental deviatoric strain Δγ₃ Matimum value = 0,2807 (Element 27522 at Node 702) Minimum value = 0,08343°10⁻⁶ (Element 43041 at Node 9186) ntal dev iatoric strain Δγ laximum value = 0,1399 (Element 22234 at Node 680) imum value = 0,04921*10 ⁴ (Element 43371 at Node 6)

PLAXIS 21_1m Fr_medium mesh

2020-12-07

24 Skanska Sverige AB

75/110

2020-10-14

47 Skanska Sverige AB

77/110

 $Cu = 20 \ kPa$

Bilaga C – Brottmekanismer från 3D-FEM för fallet schakt i form av kvadratisk schaktgrop för exempelvis pumpstation med ytlast på ena sidan

Output Version 2018 0.0.0 Output Version 2018 0 0 0 tal deviatoric strain Δγ. toric strain Δγ. imum value = 0,3847 (Element 4015 at Node 419) 1 value = 0,09408*10⁻⁶ (Element 27193 at Node 10559) n value = 0,4006 (Element 15831 at Node 14048) value = 0,9100*10⁻⁶ (Element 31396 at Node 8997) PLAXIS Aa_1m Fr_medium mesh 24 Skanska Sverige AB PLAXIS Texture 4a_1m Fr_medium mesh 266 Skanska Sverige AB 2020-10-14 2020-10-14 Output Version 2018 0.0.0 Output Version 2018 0.0.0 19⁻¹] 248/00 2287,00 5587,00 1987,00 1987,00 1987,00 1987,00 1987,00 1987,00 1987,00 1987,00 1987,00 1987,00 1987,00 1987,00 Incremental deviatoric strain Δγ₉ im value = 0,1537 (Element 6880 at Node 2205) value = 0,04341*10⁻⁶ (Element 28274 at Node 210) Incremental deviatoric strain Δγ₉ m value = 0,2373 (Element 13459 at Node 12305) value = 0,09667*10⁻⁶ (Element 27601 at Node 9707) PLAXIS Automatic Action PLAXIS 2020-10-17 PLAXIS 46_1m Fr_medium mesh 596 Skanska Sverige AB 2020-10-17 Output Version 2018 0.0.0 Gutaat Version 2018 0.0.0 accemental deviatoric strain $\Delta \gamma_a$ alue = 0,1844 (Element 8885 at Node 2147) e = 0,1687*10⁻⁶ (Element 26089 at Node 217) tal deviatoric strain $\Delta \gamma_y$ alue = 0,1801 (Element 2129 at Node 408) = 0,08165*10⁻⁶ (Element 26888 at Node 624 PLAXIS 4c_1m Fr_medium mesh PLAXIS 4c_1m Fr_medium mesh 90 Skanska Sverige AB 2020-10-17 2020-10-17 44 Skanska Sverige AB

Output Version 2018 0.0.0 Output Version 2018 0 0 0 9 ⁵ 7 128/48 19²) 1000 100 1 16,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 100,00 Incremental deviatoric strain $\Delta \gamma_a$ Ium value = 0,1120 (Element 8441 at Node 12812) value = 0,05982*10⁻⁶ (Element 28825 at Node 6815) Incremental deviatoric strain Δγ₉ vimum value = 0.07809 (Element 4030 at Node 18245) imum value = 0.01186*10⁻⁰ (Element 29787 at Node 7) PLAXIS TextBarker 4d_1m Fr_medium mesh 45 Skanska Sverige AB PLAXIS Markaneer 4d_1m Fr_medium mesh 89 Skanska Sverige AB 2020-10-17 2020-10-17 Output Version 2018 0.0.0 Output Version 2018 0.0.0 1110 3 1 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 Incremental deviatoric strain $\Delta \gamma_g$ im value = 0,1837 (Element 1208 at Node 24) alue = 0,1431*10⁻⁶ (Element 23609 at Node 201) Incremental deviatoric strain Δγ₉ um value = 0,1434 (Element 1291 at Node 31) alue = 0,06496*10⁻⁶ (Element 22990 at Node 205) PLAXIS We want the full for the full state of t 2020-10-17 PLAXIS 42 1m Fr_medium mesh 43 Skanska Sverige AB 2020-10-17 Output Version 2018 0.0.0 Output Version 2018 0.0.0 1119² 200,00 20,00 P100²⁵ 040,00 040,00 040,00 040,00 040,00 040,00 040,00 040,00 040,00 040,00 040,00 040,00 040,00 040,00 040,00 ncremental deviatoric strain Δγ_s alue = 0,08748 (Element 1222 at Node 8448) e = 0,02191*10⁻⁶ (Element 37555 at Node 203) ntal deviatoric strain $\Delta \gamma_y$ alue = 0,06716 (Element 1855 at Node 14896) ue = 0,05644*10⁻⁶ (Element 37893 at Node 236) PLAXIS 4f_1m Fr_medium mesh PLAXIS Max control Januarian 4f_1m Fr_medium mesh 45 Skanska Sverige AB 2020-10-17 2020-10-17 89 Skanska Sverige AB

 $Cu = 10+1,5z \ kPa$

Output Version 2018 0.0.0 Output Version 2018 0 0 0 9²1 278,00 2181,081 1581,09 1481,09 1481,09 1281,09 1081,09 1081,09 1081,09 1081,09 tal deviatoric strain Δγ, tal deviatoric strain Δγ. num value = 0,1260 (Element 14831 at Node 8177) n value = 0,01179*10⁻⁶ (Element 35125 at Node 7811) n value = 0,2053 (Element 7887 at Node 452) ue = 0,09187*10⁻⁶ (Element 35125 at Node 7811) PLAXIS TextBarker 4g_1m Fr_medium mesh 24 Skanska Sverige AB PLAXIS Maximum 4g_1m Fr_medium mesh 404 Skanska Sverige AB 2020-10-14 2020-10-14 Output Version 2018 0.0.0 Output Version 2018 0.0.0 1110 3 1 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 1240,00 200,00 150,00 548,00 148,00 128,00 108,00 08,00 00,00 90,00 20,00 Incremental deviatoric strain $\Delta \gamma_g$ m value = 0,1882 (Element 4407 at Node 27) alue = 0,08837*10⁻⁸ (Element 27171 at Node 7) ntal deviatoric strain Δγ, num value = 0,2047 (Element 4534 at Node 14228) m value = 0,03496*10⁻⁶ (Element 27301 at Node 8) 2020-10-17 PLAXIS 4h_1m Fr_medium mesh 23 Skanska Sverige AB 2020-10-17 PLAXIS 44_1m Fr_medium mesh 80 Skanska Sverige AB Output Version 2018 0.0.0 Output Version 2018 0.0.0 1998³1 29870 29470 29470 29470 29470 29470 29470 194700 19470 19470 19470 19470 19470 194700 19470 19470 19470 1 1119²³ 1140,00 1140,00 1140,00 1140,00 1280,00 1280,00 480,00 480,00 480,00 480,00 480,00 480,00 480,00 480,00 480,00 480,00 480,00 480,00 ncremental deviatoric strain Δγ_s value = 0,2646 (Element 3564 at Node 6187) = = 0,03761*10⁻⁶ (Element 26098 at Node 6045) ntal deviatoric strain $\Delta \gamma_y$ alue = 0,1518 (Element 3589 at Node 6188) e = 0,02018*10⁻⁶ (Element 24192 at Node 209 PLAXIS 4i_1m Fr_medium mesh PLAXIS Max control Junctions Junctions Junctions 4i_11m Fr_medium mesh 47 Skanska Sverige AB 2020-10-17 2020-10-17 93 Skanska Sverige AB

89/110

 $Cu = 20 \ kPa$

Output Version 2318 0 0 3 Output Version 2018 0 0 0 21,00 30,00 30,20, Current cohesion c ncremental displacements |Δu| lue = 0,2933 m (Element 3562 at Node 2421) value of 20.00 kN/m PLAXIS 40_1m Fr_medium mesh PLAXIS 40_1m Fr_medium mesh 2020-10-17 2020-10-17 77 Skanska Sverige AB 97 Skanska Sverige AB Cutput Version 2318 0.0.3 Output Version 2018 0 0 0 1710-1 / rd 346,640 1346,640 1346,640 1346,640 1346,640 1346,640 1346,640 1346,640 1346,640 1346,640 1346,640 1346,640 1346,640 1346,640 Current cohesion c form value of 20,00 kN/m² Incremental displacements (Δu) alue = 0,1361 m (Element 2791 at Node 11926) PLAXIS 4p_1m Fr_medium mesh 2020-10-17 2020-10-17 PLAXIS 72 92 Skanska Sverige AB Skanska Sverige AB 4p 1m Fr medium mesh esion 2318.0.0.3 Output Version 2018 0.0.0 Current cohesion c Incremental displacements |Δu| Maximum value = 0,3223 m (Element 4881 at Node 8193) Uniform value of 20,00 kN/mi PLAXIS Precision 4q_1m Fr_medium mesh PLAXIS 2020-10-17 2020-10-17 Skanska Sverige AB 71 Skanska Sverige AB 91 wolon 2318 0.0.3 Output Version 2018 0.0.0 alue of 20,00 kN PLAXIS 2020-10-17 PLAXIS Text control Text control Text control Fr_1m Fr_medium mesh 73 2020-10-17 93 Skanska Sverige AB

Output Version 2018 0.0.0 Output Version 2018 0 0 0 Incremental deviatoric strain Δγ₉ value = 0,3840 (Element 14876 at Node 11973) ue = 0,1898*10⁻⁶ (Element 28446 at Node 8476) al deviatoric strain Δγ. m value = 0,4967 (Element 11148 at Node 6638) value = 1,621^10⁻⁶ (Element 27650 at Node 9280) PLAXIS Marinerer 4m_1m Fr_medium mesh 24 Skanska Sverige AB PLAXIS 2020-10-14 2020-10-14 Output Version 2018 0.0.0 Output Version 2018 0.0.0 Incremental deviatoric strain Δγ₃ um value = 0,3213 (Element 7688 at Node 374) alue = 0,2826*10⁻⁶ (Element 24365 at Node 5737) atoric strain Δγ, m value = 0,3453 (Element 3627 at Node 5854) value = 0,1160*10⁻⁸ (Element 24146 at Node 7) PLAXIS Market M PLAXIS 4n_1m Fr_medium mesh 24 Skanska Sverige AB 2020-10-17 2020-10-17 Output Version 2018 0.0.0 Output Version 2018 0.0.0 1716² 2966/40 2966/40 2966/00 2986/00 2086/0 cremental deviatoric strain Δγ₃ lue = 0,1438 (Element 10723 at Node 1975) e = 0,1503*10⁻⁶ (Element 23250 at Node 17) storic strain Δγ₉ lue = 0,1544 (Element 3567 at Node 399) = 0,03927*10⁻⁶ (Element 23416 at Node 238 PLAXIS 40_1m Fr_medium mesh PLAXIS 40_1m Fr_medium mesh 2020-10-17 2020-10-17 49 Skanska Sverige AB 97 Skanska Sverige AB

Bilaga D – Brottmekanismer från 3D-FEM för fallet schakt i form av rektangulär schaktgrop för exempelvis brosstöd med ytlast på ena kortsidan

 $Cu = 10+1,5z \ kPa$

Output Version 2018 0.0.0

Output Version 2018 0 0 0

Bilaga E – Brottmekanismer från 3D-FEM för fallet långsträckt ledningsschakt med lokal ytlast (schaktgeometri i 2D och ytlast i 3D)

$Cu = 10+1,5z \ kPa$

SKANSKA

Cu = 20 kPa

PLAXIS

PLAXIS

ersion 2318 0.0.3

Output Version 2018 0.0.0

Output Version 2318 0.0.2

Incremental displacements |Δu| Maximum value = 0,3489 m (Element 10148 at Node 308)

46

Skanska Sverige AB

2020-10-16

SKANSKA

109/110

SKANSKA

Bilaga F – Beräknade säkerhetsfaktorer

	Huvudscenario	Scenario	Kritisk: F_2D_kritisk	Överstark: F_2D_kritisk	Kritsk: F_2D	Överstark: F_2D	Kritisk: F_20 från PLAXIS3D [-]	Överstark: F_2D från PLAXIS3D [-]	E_30_PLAXIS [+]
		1a	1,06	1,44	1,06	1,43	1,06	1,44	1,30
		1b	1,25	1,82	1,26	1,81	1,26	1,85	1,54
		10	1,13	1,82	1,13	1,81	1,14	1,83	1,65
	ŧ	1d	1,28	2,42	1,29	2,41	1,30	2,43	1,90
	rtlas	1e	1,02	1,35	1,03	1,36	1,04	1,38	1,28
	al y	1f	1,20	1,68	1,21	1,68	1,21	1,7	1,47
	ct ledningsschakt med lok	1g	1,17	1,33	1,16	1,34	1,18	1,37	1,36
		1h	1,29	1,48	1,27	1,49	1,29	1,52	1,51
		1i	1,17	1,49	1,17	1,46	1,19	1,47	1,44
	räc	1j	1,31	1,72	1,31	1,69	1,33	1,70	1,63
	Långst	1k	1,20	1,52	1,19	1,49	1,23	1,51	1,49
		11	1,33	1,72	1,32	1,69	1,36	1,72	1,68
	Bu	2a	1,08	00	1,07		1,08	-	1,45
	, Ilni	2b	1,27	00	1,25		1,25	-	1,65
	iggning och återfy	2c	1,08	00	1,07	- 00	1,08	-	1,30
		2d	1,27	00	1,25		1,25	-	1,48
		2e	1,08	00	1,07	- 00	1,08	-	1,22
		20	1.04	00	1,25		1,25	-	1,41
		2h	1,25	00	1,26	00	1,27	-	1,57
	gslä	2i	1,04	00	1,05	00	1,05	-	1,26
	schakt, lednin	2j	1,25	00	1,26		1,27	-	1,47
		2K 2I	1,04		1,05	~~~~	1,05	-	1,21
		2m	1,10		1,08		1,08	-	1,59
		2n	1,31	00	1,28	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	1,28	-	1,87
	vis	20	1,10	00	1,08		1,08	-	1,46
	app	2p	1,31	00	1,28	- 00	1,28	-	1,70
	æ	20	1 10		1.00		1.09		1 2 7
	Eta	2q 2r	1,10	00 00	1,08		1,08	-	1,37
	Eta	2q 2r	1,10 1,31	00 00	1,08 1,28	00	1,08 1,28	-	1,37 1,59
	an Eta	2q 2r 3a	1,10 1,31 1,06	∞ ∞ 1,06	1,08 1,28 1,03	00 00 00	1,08 1,28 1,02	8	1,37 1,59 1,18
	tsidan Eta	2q 2r 3a 3b	1,10 1,31 1,06 1,25	∞ ∞ 1,06 1,25	1,08 1,28 1,03 1,20	00 00 00	1,08 1,28 1,02 1,20	8 8	1,37 1,59 1,18 1,37
	kortsidan Eta	2q 2r 3a 3b 3c	1,10 1,31 1,06 1,25 1,06	∞ 1,06 1,25 ∞	1,08 1,28 1,03 1,20 1,05	00 00 00 00	1,08 1,28 1,02 1,20 1,05	8 8 8	1,37 1,59 1,18 1,37 1,41
	t på kortsidan Eta	2q 2r 3a 3b 3c 3d	1,10 1,31 1,06 1,25 1,06 1,21	∞ ∞ 1,06 1,25 ∞ ∞	1,08 1,28 1,03 1,20 1,05 1,20	00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20	• • 8 8 8 8	1,37 1,59 1,18 1,37 1,41 1,59
	tlast på kortsidan Eta	2q 2r 3a 3b 3c 3d 3e	1,10 1,31 1,06 1,25 1,06 1,21 1,02	∞ 1,06 1,25 ∞ ∞ ∞	1,08 1,28 1,03 1,20 1,05 1,20 1,02	00 00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20 1,03	- - - - - - - - - - - - - - - - - - -	1,37 1,59 1,18 1,37 1,41 1,59 1,76
	d ytlast på kortsidan Eta	2q 2r 3a 3b 3c 3d 3e 3f	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23	∞ 1,06 1,25 ∞ ∞ ∞ ∞	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22	00 00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20 1,03 1,23	• • 8 8 8 8 8 8 8 8 8 8 8 8 8	1,37 1,59 1,18 1,37 1,41 1,59 1,76 1,9
	, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3e 3f 3g	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04	∞ 1,06 1,25 ∞ ∞ ∞ ∞ 1,04	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22 1,22	00 00 00 00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20 1,03 1,23 1,06	- - - - - - - - - - - - - - - - - - -	1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18
	stöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3c 3f 3g 3h	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04	∞ 1,06 1,25 ∞ ∞ ∞ 1,04	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22 1,05	00 00 00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20 1,03 1,23 1,06	- 8 8 8 8 8 8 8 8 8 8	1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18
	brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3c 3f 3g 3h 2i	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26	∞ ∞ 1,06 1,25 ∞ ∞ ∞ 1,04 1,26	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,02 1,05 1,26	00 00 00 00 00 00 00	1,08 1,28 1,02 1,02 1,05 1,20 1,03 1,23 1,06 1,27		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39
	tvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3c 3f 3g 3f 3g 3h 3i 3i	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26 1,04	∞ ∞ 1,06 1,25 ∞ ∞ ∞ 00 00 1,04 1,26 ∞ ∞ ∞	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22 1,05 1,26	00 00 00 00 00 00 00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20 1,03 1,23 1,06 1,27 1,07 1,27	- - - - - - - - - - - - - - - - - - -	1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.36 1.58
	npelvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3c 3d 3c 3d 3g 3f 3g 3h 3i 3j 3k	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26 1,04 1,26	∞ ∞ 1,06 1,25 ∞ ∞ ∞ 1,04 1,26 ∞ ∞ 1,04	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22 1,05 1,26 1,05 1,26	00 00 00 00 00 00 00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20 1,03 1,23 1,06 1,27 1,07 1,27		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.38 1.38 1.38 1.38 1.38
	exempel vis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3e 3f 3g 3h 3i 3j 3k	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26 1,04 1,26 1,05	∞ ∞ 1,06 1,25 ∞ ∞ ∞ ∞ 1,04 1,26 ∞ ∞ 1,18	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22 1,05 1,26 1,05 1,26 1,05	00 00 00 00 00 00 00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20 1,03 1,23 1,06 1,27 1,07 1,27 1,06		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.36 1.58 1.35
	för exempelvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3c 3d 3e 3f 3g 3h 3i 3j 3k 3l	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26 1,04 1,26 1,05 1,28	∞ ∞ 1,06 1,25 ∞ ∞ ∞ 1,04 1,26 ∞ 1,04 1,26 ∞ 1,18 1,48	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,02 1,22 1,05 1,26 1,05 1,26 1,05 1,27	00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	1,08 1,28 1,02 1,20 1,05 1,20 1,03 1,23 1,06 1,27 1,07 1,27 1,06 1,28	- - - - - - - - - - - - - -	1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.18 1.39 1.36 1.55 1.35 1.64
	rop, för exempelvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3d 3f 3g 3h 3i 3j 3k 3l 3m	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26 1,04 1,26 1,05 1,28 1,05	∞ ∞ 1,06 1,25 ∞ ∞ ∞ 00 1,04 1,26 ∞ 00 1,18 1,48 1,08	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,02 1,05 1,26 1,05 1,26 1,05 1,27 1,03		1,08 1,28 1,02 1,20 1,05 1,20 1,03 1,23 1,06 1,27 1,07 1,27 1,06 1,28 1,03		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.39 1.38 1.38 1.35 1.64 1.31
	schaktgrop, för exempelvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3e 3f 3g 3h 3j 3k 3i 3i 3k 3l 3m 3n	1,10 1,31 1,06 1,25 1,06 1,21 1,21 1,02 1,23 1,04 1,26 1,04 1,26 1,05 1,28 1,05 1,25	∞ ∞ 1,06 1,25 ∞ ∞ ∞ 1,04 1,26 ∞ ∞ 1,04 1,26 ∞ ∞ 1,18 1,48 1,08 1,28	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22 1,05 1,26 1,05 1,26 1,05 1,26 1,05 1,27 1,03 1,22		1.08 1.28 1.02 1.02 1.05 1.20 1.03 1.23 1.03 1.23 1.06 1.27 1.07 1.27 1.06 1.28 1.03 1.21		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.36 1.58 1.35 1.58 1.35 1.64 1.31 1.52
	lär schaktgrop, för exempelvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3d 3e 3f 3g 3h 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,21 1,02 1,23 1,04 1,26 1,04 1,26 1,05 1,28 1,05 1,25 1,04	∞ ∞ 1,06 1,25 ∞ ∞ ∞ 1,04 1,26 ∞ ∞ 1,04 1,26 ∞ ∞ 1,18 1,48 1,08 1,28 1,24	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22 1,05 1,26 1,05 1,26 1,05 1,26 1,05 1,27 1,03 1,22 1,04		1.08 1.28 1.02 1.02 1.05 1.20 1.03 1.23 1.06 1.27 1.07 1.27 1.07 1.27 1.06 1.28 1.03 1.21 1.05		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.36 1.55 1.64 1.31 1.52 1.47
	ngulär schaktgrop, för exempelvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3c 3d 3e 3f 3g 3h 3i 3j 3j 3j 3j 3j 3j 3j 3j 3j 3j 3j 3j 3j	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26 1,04 1,26 1,05 1,28 1,05 1,25 1,04 1,27	∞ ∞ 1,06 1,25 ∞ ∞ ∞ ∞ 0 0 1,04 1,26 ∞ 0 0 1,04 1,26 0 0 1,04 1,25 1,24 ∞ 0 0 0 0 0 0 0 0 0 0 0 0 0	1.08 1.28 1.03 1.20 1.05 1.20 1.02 1.02 1.05 1.26 1.05 1.26 1.05 1.26 1.05 1.26 1.05 1.27 1.03 1.22 1.04		1.08 1.28 1.02 1.02 1.05 1.20 1.03 1.23 1.06 1.27 1.07 1.27 1.06 1.28 1.03 1.21 1.05 1.28		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.38 1.38 1.35 1.64 1.31 1.52 1.47 1.84
	ektangulär schaktgrop, för exempelvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3e 3f 3g 3f 3g 3h 3i 3j 3j 3m 3n 3o 3o 3p 3q	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26 1,04 1,26 1,05 1,28 1,05 1,25 1,04	∞ 00 1,06 1,25 ∞ ∞ ∞ ∞ ∞ 00 ∞ 1,04 1,26 ∞ 00 ∞ 1,18 1,48 1,08 1,28 1,24 ∞ 1,32	1,08 1,28 1,03 1,20 1,05 1,20 1,02 1,22 1,05 1,26 1,26 1,26 1,26 1,05 1,27 1,03 1,22 1,04		1,08 1,28 1,02 1,05 1,20 1,03 1,23 1,06 1,23 1,06 1,27 1,07 1,27 1,06 1,28 1,03 1,21 1,05 1,28 1,05		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.76 1.9 1.39 1.39 1.35 1.58 1.35 1.58 1.35 1.64 1.31 1.52 1.47 1.84 1.57
	Rektangulär schaktgrop, för exempelvis brostöd, med ytlast på kortsidan	2q 2r 3a 3b 3c 3d 3e 3f 3g 3h 3g 3h 3i 3j 3k 3i 3i 3k 3i 3g 3g 3g 3g 3g 3g 3g	1,10 1,31 1,06 1,25 1,06 1,21 1,23 1,04 1,26 1,04 1,26 1,05 1,28 1,05 1,25 1,04 1,25 1,04 1,27 1,04 1,27 1,04	∞ ∞ ∞ ∞ 1.06 1.25 ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞ 1.04 1.26 ∞ ∞ 1.18 1.48 1.08 1.28 1.24 ∞ 1.32 1.64	1.08 1.28 1.23 1.20 1.05 1.20 1.02 1.22 1.05 1.26 1.05 1.26 1.05 1.26 1.05 1.27 1.03 1.22 1.04 1.27 1.04 1.27		1.08 1.28 1.02 1.20 1.20 1.05 1.20 1.03 1.23 1.06 1.27 1.07 1.27 1.06 1.28 1.03 1.21 1.05 1.28 1.05 1.28		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.18 1.39 1.36 1.35 1.64 1.31 1.52 1.47 1.84 1.57 1.90
	st på Rektangulär schaktgrop, för exempetvis brostidt, med ytlast på kortsidan Eta	2q 2r 3a 3b 3c 3d 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1,10 1,31 1,06 1,25 1,06 1,21 1,02 1,23 1,04 1,26 1,04 1,26 1,05 1,28 1,05 1,25 1,04 1,25 1,04 1,27 1,04 1,27 1,04 1,23 1,04 1,25 1,25 1,26 1,25 1,26 1,27 1,27 1,28 1,26 1,27 1,27 1,28 1,26 1,27 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1,26 1,27 1,28 1	00 00 1,06 1,25 00 00 00 00 1,04 1,26 00 00 1,18 1,48 1,08 1,24 00 1,22 1,64 00	1.08 1.28 1.20 1.20 1.05 1.20 1.05 1.20 1.02 1.05 1.20 1.05 1.22 1.05 1.28 1.05 1.27 1.03 1.22 1.04 1.23 1.04		1.08 1.28 1.02 1.20 1.05 1.20 1.03 1.23 1.06 1.27 1.07 1.27 1.06 1.28 1.03 1.21 1.05 1.28 1.05 1.28 1.05		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.36 1.58 1.35 1.58 1.35 1.58 1.57 1.59 1.57 1.58 1.57 1.58 1.57 1.58 1.57 1.57 1.59 1.57 1.58 1.57 1.57 1.57 1.59 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.57 1.59 1.57 1.57 1.57 1.57 1.57 1.59 1.57 1.57 1.57 1.57 1.57 1.59 1.57 1.57 1.59 1.57 1.59 1.57 1.59 1.57 1.59 1.57 1.59 1.57 1.57 1.59 1.57 1.57 1.59 1.57 1.59 1.57 1.59 1.57 1.57 1.59 1.57 1.59 1.57 1.57 1.59 1.57 1.57 1.59 1.57 1.57 1.59 1.57 1
	ritast på Rektangulär schaktgrop, för exempelvis brostöd, med yttast på kortsidan Eta	2q 2r 3a 3b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1.10 1.31 1.31 1.06 1.25 1.06 1.21 1.02 1.23 1.04 1.23 1.04 1.26 1.04 1.26 1.05 1.25 1.25 1.05 1.25 1.05 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.05	00 00 0.06 1.25 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00	1.08 1.28 1.03 1.20 1.05 1.20 1.02 1.02 1.02 1.22 1.05 1.26 1.05 1.28 1.05 1.28 1.05 1.27 1.03 1.22 1.03 1.27 1.04 1.23 1.04 1.23		1.08 1.28 1.02 1.20 1.05 1.20 1.20 1.20 1.20 1.23 1.06 1.27 1.07 1.27 1.07 1.27 1.07 1.27 1.03 1.21 1.03 1.21 1.03 1.21 1.03 1.22 1.03 1.22 1.03		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.76 1.9 1.36 1.36 1.36 1.36 1.36 1.35 1.64 1.31 1.52 1.47 1.84 1.57 1.90 1.33 1.52 1.41
	ed ytlast på Rektangulär schaktgrop, för exempelvis brostod, med ytlast på kortsiden Eta	2q 2r 3a 3b 3c 3d 3c 3d 3d 3g 3f 3g 3h 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i	1.10 1.31 1.31 1.31 1.31 1.31 1.31 1.31	a a a b a b a b a b a a b a a a b b b b b b a b b b b b b b b a a a a a a a	1.08 1.28 1.20 1.21 1.22 1.05 1.22 1.05 1.26 1.05 1.27 1.03 1.27 1.03 1.22 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04		1.08 1.28 1.02 1.02 1.05 1.20 1.20 1.20 1.20 1.20 1.20 1.23 1.06 1.23 1.06 1.27 1.07 1.27 1.06 1.28 1.03 1.21 1.05 1.28 1.05 1.22 1.05 1.22		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.39 1.36 1.35 1.35 1.64 1.31 1.52 1.47 1.84 1.57 1.90 1.33 1.62 1.41 1.59
	n, med ytlast på Raktangulär schaktgrop, för oxempelvis brostod, med ytlast på kortsidan Eta	2q 2r 3a 3b 3c 3d 3e 3f 3g 3h 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i 3i	1.10 1.31 1.31 1.31 1.32 1.06 1.25 1.02 1.21 1.21 1.22 1.23 1.04 1.28 1.05 1.28 1.05 1.28 1.05 1.25 1.04 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.04 1.27 1.05 1.27 1.05 1.05 1.05 1.05 1.05 1.05 1.05 1.05	00 00 1.06 1.25 00 0 01 0 02 0 03 0 1.04 1.26 00 0 1.18 1.08 1.28 1.28 1.24 00 1.32 1.64 00 0 00 0	1.08 1.28 1.28 1.28 1.20 1.05 1.20 1.02 1.02 1.02 1.02 1.02 1.05 1.26 1.05 1.27 1.03 1.22 1.04 1.27 1.04 1.23 1.04 1.23 1.05		1.08 1.28 1.02 1.05 1.20 1.05 1.20 1.23 1.06 1.27 1.07 1.27 1.06 1.28 1.03 1.21 1.05 1.28 1.05 1.22 1.05 1.22 1.05		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.39 1.38 1.38 1.58 1.35 1.64 1.31 1.52 1.47 1.84 1.57 1.90 1.33 1.52 1.41 1.52 1.47
	tition, med ytlast på Rektangulär schaktgrop, för oxompolvis brostöd, med ytlast på kortisiden Eta	2q 2r 3a 3b 3c 3c 3e 3f 3g 3f 3g 3h 3g 3h 3j 3k 3l 3n 3n 3n 3n 3n 3n 3n 3n 3n 3n 3n 4a 4c 4c 4d 4f	1.10 1.01 1.31 1.31 1.31 1.31 1.31 1.31	a a a b a a b a a b a a b a a a a b a	1.08 1.28 1.29 1.20 1.20 1.20 1.20 1.20 1.22 1.20 1.22 1.25 1.26 1.26 1.26 1.27 1.03 1.22 1.04 1.27 1.04 1.22 1.04 1.23 1.04 1.23 1.04 1.23 1.20		1.08 1.28 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.38 1.58 1.35 1.58 1.35 1.64 1.31 1.52 1.47 1.84 1.37 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.33 1.57 1.90 1.35 1.57 1.90 1.35 1.57 1.90 1.76 1.90 1.76 1.90 1.58 1.57 1.90 1.57 1.90 1.90 1.76 1.90 1.77 1.90 1.77 1.90 1.77 1.90 1.77 1.90 1.78 1.77 1.90 1.78 1.77 1.90 1.33 1.52 1.44 1.57 1.90 1.58 1.59 1.57 1.90 1.58 1.59 1.57 1.90 1.58 1.57 1.90 1.52 1.44 1.57 1.90 1.52 1.44 1.57 1.90 1.52 1.44 1.57 1.90 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.59 1.90
	pstation, med ytlast på Rektangulår schaktgrop, för exempelvis brostöd, med ytlast på kortsiden Eta	2q 2r 3a 3b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1.10 1.31 1.31 1.31 1.31 1.31 1.31 1.31	00 00 1,106 1,25 00 01 02 01 02 02 03 04 1,26 05 06 07 08 1,18 1,48 1,08 1,24 06 07 08 09 00 <	1.08 1.28 1.20 1.21 1.22 1.05 1.26 1.05 1.26 1.05 1.28 1.05 1.28 1.05 1.28 1.05 1.27 1.03 1.22 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.20 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.28		1.08 1.28 1.02 1.02 1.02 1.20 1.20 1.20 1.20 1.20		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.38 1.35 1.64 1.31 1.52 1.47 1.94 1.57 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.41 1.57 1.90 1.90 1.33 1.52 1.41 1.59 1.76 1.90 1.35 1.64 1.91 1.90 1.35 1.64 1.91 1.90 1.95 1.76 1.90 1.35 1.64 1.91 1.90 1.95 1.95 1.76 1.90 1.35 1.64 1.91 1.95 1.90 1.93 1.52 1.90 1.93 1.52 1.90 1.93 1.52 1.99 1.93 1.52 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.99 1.98 1.99 1.99 1.98 1.99 1.98 1.99 1.98 1.99 1.98
	umpetation, med ytlast på Rektangulär schaktgrop, för exempelvis brostlod, med ytlast på kortsiden Eta	2q 2r 3a 3b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1.10 1.31 1.31 1.31 1.31 1.31 1.31 1.31	00 00 1.06 1.25 00 00 01 02 03 1.04 1.20 00 01 02 03 1.04 1.20 03 1.18 1.08 1.24 03 1.24 04 05 06 07 08 09 00 00 00 00 00	1.08 1.28 1.29 1.20 1.20 1.20 1.20 1.20 1.20 1.21 1.02 1.22 1.05 1.26 1.27 1.03 1.22 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.25 1.26		1.08 1.28 1.02 1.20 1.05 1.20 1.20 1.23 1.05 1.23 1.06 1.27 1.07 1.27 1.06 1.28 1.03 1.21 1.27 1.27 1.05 1.28 1.05 1.22 1.05 1.22 1.05 1.22 1.05		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.36 1.35 1.64 1.31 1.52 1.47 1.84 1.57 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.99 1.35 1.59 1.76 1.90 1.33 1.52 1.76 1.99 1.33 1.52 1.76 1.99 1.33 1.52 1.76 1.99 1.33 1.52 1.76 1.99 1.33 1.52 1.76 1.99 1.35 1.55 1.76 1.55 1.76 1.52 1.76 1.76 1.76 1.76 1.55 1.76 1.55 1.76 1.76 1.76 1.76 1.55 1.76 1.76 1.76 1.76 1.55 1.76 1.55 1.76 1.55 1.76 1.55 1
	is pumpetation, med ytiast på Rektangulär schaktgrop, för exempelvis brostöd, med ytlast på kortisiden Eta	2q 2r 3a 3b 3c 3c 3e 3f 3g 3f 3g 3h 3g 3h 3j 3j 3k 3l 3g 3g 3g 3r 4a 4b 4c 4d 4d 4d 4d 4f 4g 4d	1.10 1.01 1.31 1.31 1.31 1.31 1.31 1.31	a a a b a a b a a b a a b a a a a b a	1.08 1.28 1.28 1.28 1.20 1.20 1.20 1.20 1.22 1.20 1.22 1.25 1.26 1.26 1.26 1.27 1.03 1.22 1.04 1.27 1.03 1.22 1.04 1.22 1.04		1.08 1.28 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.18 1.39 1.36 1.58 1.35 1.58 1.35 1.64 1.31 1.52 1.47 1.84 1.37 1.90 1.33 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.55 1.57 1.90 1.33 1.55 1.57 1.90 1.35 1.58 1.57 1.90 1.33 1.52 1.41 1.52 1.59 1.59 1.58 1.57 1.90 1.33 1.52 1.41 1.52 1.90 1.33 1.59
	eevis pumpstation, med ytlast på Rekangulär schaktgrop, för exempelvis brostöd, med ytlast på kortsiden Eta (dan	2q 2r 3a 3b 3c 3c 3f 3g 3f 3g 3h 3j 3j 3k 3j 3j 3k 3l 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	1.10 1.01 1.31 1.31 1.31 1.31 1.31 1.31	a a a b a b a b a b a b a b a a a b b b b a b b b b b b b b b a b b b b b b b b b b b b b b b b b b c c c c	1.08 1.28 1.20 1.21 1.22 1.05 1.22 1.05 1.26 1.05 1.27 1.03 1.27 1.03 1.22 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.25		1.08 1.28 1.02 1.02 1.02 1.20 1.20 1.20 1.20 1.20		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.18 1.39 1.38 1.38 1.38 1.38 1.38 1.35 1.64 1.31 1.52 1.47 1.90 1.33 1.57 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.55 1.50 1.76 1.90 1.33 1.55 1.55 1.50 1.76 1.90 1.35 1.55
	empolvis pumpstation, med ytlast på Rektangulär schaktgrop, för exempelvis brostidi, med ytlast på kortisiden Eta na siden	2q 2r 3a 3b 3c 3d 3e 3f 3g 3h 3i 3g 3h 3i 3i 3k 3l 3i 3i 3 3 3 4 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4	1.10 1.01 1.31 1.31 1.31 1.31 1.31 1.31	00 00 1.106 1.25 00 00 01 02 1.104 1.20 00 01 02 03 1.120 03 1.18 1.18 1.18 1.18 1.24 03 1.24 03 04 05 06 07 08 09 00	1.08 1.28 1.28 1.29 1.20 1.20 1.20 1.20 1.22 1.20 1.22 1.26 1.26 1.26 1.27 1.03 1.22 1.04 1.27 1.04 1.27 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.25 1.04 1.25 1.26 1.26 1.20 1.27 1.27 1.27 1.27 1.28 1.28 1.28 1.28 1.28 1.28 1.28 1.29 1.29 1.29 1.29 1.29 1.29 1.29 1.29		1.08 1.28 1.02 1.05 1.20 1.05 1.20 1.23 1.06 1.23 1.06 1.27 1.07 1.27 1.07 1.28 1.03 1.21 1.05 1.28 1.05 1.28 1.05 1.22 1.05 1.22 1.05 1.22 1.05 1.22 1.05 1.22 1.05 1.22 1.05 1.22 1.05 1.23 1.24 1.27 1.05 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.78 1.39 1.36 1.35 1.84 1.31 1.52 1.47 1.84 1.57 1.84 1.57 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.76 1.99 1.35 1.59 1.76 1.90 1.33 1.52 1.76 1.90 1.33 1.52 1.76 1.99 1.33 1.52 1.76 1.99 1.33 1.55 1.76 1.99 1.33 1.55 1.55 1.76 1.99 1.35 1.55 1.76 1.55
	co, for exempeivis pumpstation, med ytlast på Roklangulär schaktgrop, for exempeivis brostöd, med ytlast på kortsiden Eta one siden	2q 2r 3a 3b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1.10 1.01 1.31 1.31 1.31 1.31 1.31 1.31	a a a b a a a a b a a a a a a b a b b a	1.08 1.28 1.28 1.20 1.20 1.20 1.20 1.20 1.22 1.20 1.22 1.25 1.26 1.26 1.27 1.03 1.22 1.05 1.28 1.27 1.03 1.22 1.04 1.27 1.04 1.23 1.04 1.25 1.06 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.08 1.28 1.29 1.02 1.02 1.02 1.03 1.20 1.03 1.23 1.06 1.27 1.06 1.27 1.06 1.27 1.27 1.06 1.28 1.03 1.21 1.05 1.28 1.05 1.28 1.05 1.28 1.05 1.28 1.05 1.28 1.05 1.28 1.05 1.28 1.05 1.27 1.27 1.27 1.27 1.27 1.27 1.27 1.27		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.39 1.38 1.58 1.58 1.58 1.54 1.31 1.52 1.44 1.31 1.52 1.47 1.94 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.55
	ktgrop. för exempelvis pumpetation, med ytlast på Rektungulär schaktgrop, för exempelvis brostöd, med ytlast på kortisiden Eta ena siden	2q 2r 3a 3b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1.10 1.01 1.31 1.31 1.31 1.31 1.31 1.31	am am 1.106 1.25 am m <td< td=""><td>1.08 1.28 1.28 1.28 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20</td><td></td><td>1.08 1.28 1.20 1.02 1.20 1.20 1.20 1.20 1.20 1.20</td><td></td><td>1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.76 1.9 1.76 1.9 1.76 1.9 1.35 1.64 1.35 1.64 1.35 1.64 1.31 1.52 1.47 1.84 1.57 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.56 1.50 1.58 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.44 1.57 1.44 1.58 1.42 1.42 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.44 1.58 1.42 1.44 1.74 1.74 1.74</td></td<>	1.08 1.28 1.28 1.28 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.08 1.28 1.20 1.02 1.20 1.20 1.20 1.20 1.20 1.20		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.76 1.9 1.76 1.9 1.76 1.9 1.35 1.64 1.35 1.64 1.35 1.64 1.31 1.52 1.47 1.84 1.57 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.56 1.50 1.58 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.44 1.57 1.44 1.58 1.42 1.42 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.44 1.58 1.42 1.44 1.74 1.74 1.74
	chaktgrop, för exempelvice pumpetation, med yttast på Rektangulär schaktgrop, för exempelvis brostod, med yttast på kortsiden Eta ona siden	2q 2r 3a 3b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1.10 1.01 1.31 1.31 1.31 1.31 1.31 1.31	a a a b a b a a b a a b a a a a a b a a b b b b b b b b b b b a	1.08 1.28 1.29 1.20 1.21 1.02 1.02 1.02 1.02 1.20 1.02 1.22 1.05 1.26 1.05 1.27 1.03 1.22 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.28 1.05 1.20 1.04 1.28 1.05 1.28 1.05 1.29 1.04 1.28 1.05 1.27 1.05 1.27 1.04		1.08 1.28 1.02 1.02 1.03 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.76 1.9 1.39 1.38 1.35 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.31 1.55 1.64 1.35 1.64 1.31 1.55 1.64 1.35 1.64 1.35 1.64 1.31 1.55 1.64 1.57 1.90 1.55 1.64 1.57 1.90 1.55 1.55 1.64 1.57 1.90 1.55 1.55 1.55 1.55 1.64 1.57 1.55
	at schaktgrop, för exempelvis pumpetation, med ytlast på Roktangulär schaktgrop, för exempelvis brostöd, med ytlast på kortisiden Eta on a i dan	2q 2r 3a 3b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1.10 1.00 1.21 1.21 1.22 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.23 1.05 1.24 1.05 1.25 1.25 1.25 1.24 1.05 1.27 1.24 1.27 1.24 1.24 1.24 1.24 1.25 1.24 1.24 1.25 1.25 1.24 1.25 1.24 1.25 1.24 1.25 1.24 1.25 1.25 1.24 1.25 1.25 1.25 1.25 1.25 1.25 1.25 1.25	a a a b a a a a b a a a b a a b a b b a	1.08 1.28 1.28 1.28 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.08 1.28 1.29 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.38 1.59 1.36 1.59 1.36 1.59 1.36 1.59 1.36 1.59 1.35 1.64 1.31 1.52 1.47 1.94 1.57 1.90 1.33 1.52 1.47 1.94 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.33 1.52 1.41 1.57 1.90 1.35 1.58 1.55
	atisk schaktgrop. för exempelvis pumpetation, med ytlast på Rektungulär schaktgrop, för exempelvis brostöd, med ytlast på kortisiden Eta ena siden	2q 2r 3a 3b 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c 3c	1.10 1.01 1.31 1.31 1.31 1.31 1.31 1.31	am am 1.106 1.25 am m <td< td=""><td>1.08 1.28 1.20 1.21 1.20 1.20 1.20 1.20 1.21 1.22 1.05 1.26 1.27 1.03 1.22 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.25 1.05 1.26 1.05 1.28 1.04 1.29 1.04 1.27 1.05 1.20 1.04 1.27 1.05 1.27 1.05</td><td></td><td>1.08 1.28 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20</td><td></td><td>1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.76 1.9 1.76 1.9 1.35 1.64 1.35 1.64 1.35 1.64 1.31 1.52 1.47 1.90 1.35 1.64 1.31 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.38 1.50 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.44 1.57 1.42 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.57 1.44 1.58 1.42 1.44 1.52 1.44 1.58 1.42 1.44 1.52 1.44 1.58 1.42 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.84 1.74 1.52 1.84 1.74 1.52 1.84 1.74 1.52 1.84 1.74 1.52 1.84 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.55 1.54 1.54</td></td<>	1.08 1.28 1.20 1.21 1.20 1.20 1.20 1.20 1.21 1.22 1.05 1.26 1.27 1.03 1.22 1.04 1.23 1.04 1.23 1.04 1.23 1.04 1.25 1.05 1.26 1.05 1.28 1.04 1.29 1.04 1.27 1.05 1.20 1.04 1.27 1.05 1.27 1.05		1.08 1.28 1.20 1.20 1.20 1.20 1.20 1.20 1.20 1.20		1.37 1.59 1.18 1.37 1.41 1.59 1.76 1.9 1.76 1.9 1.76 1.9 1.76 1.9 1.35 1.64 1.35 1.64 1.35 1.64 1.31 1.52 1.47 1.90 1.35 1.64 1.31 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.47 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.33 1.52 1.44 1.57 1.90 1.38 1.50 1.42 1.42 1.42 1.42 1.42 1.42 1.42 1.44 1.57 1.42 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.58 1.42 1.44 1.58 1.44 1.58 1.42 1.44 1.57 1.44 1.58 1.42 1.44 1.52 1.44 1.58 1.42 1.44 1.52 1.44 1.58 1.42 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.44 1.74 1.52 1.84 1.74 1.52 1.84 1.74 1.52 1.84 1.74 1.52 1.84 1.74 1.52 1.84 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.74 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.54 1.54 1.54 1.55 1.54 1.54 1.54 1.55 1.54 1.54